SEARCH

SEARCH BY CITATION

References

  • Abat, J.K. and Deswal, R. (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics, 9, 43684380.
  • Alvarez, M.E., Pennell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R. and Lamb, C. (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell, 92, 773784.
  • Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D. and Rajjou, L. (2011) Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics, 11, 16061618.
  • Astier, J., Rasul, S., Koen, E., Manzoor, H., Besson-Bard, A., Lamotte, O., Jeandroz, S., Durner, J., Lindermayr, C. and Wendehenne, D. (2011) S-nitrosylation: an emerging post-translational protein modification in plants. Plant Sci.181, 527533.
  • Avsian-Kretchmer, O., Gueta-Dahan, Y., Lev-Yadun, S., Gollop, R. and Ben-Hayyim, G. (2004) The salt-stress signal transduction pathway that activates the gpx1 promoter is mediated by intracellular H2O2, different from the pathway induced by extracellular H2O2. Plant Physiol.135, 16851696.
  • Basset, G., Raymond, P., Malek, L. and Brouquisse, R. (2002) Changes in the expression and the enzymic properties of the 20S proteasome in sugar-starved maize roots: evidence for an in vivo oxidation of the proteasome. Plant Physiol.128, 11491162.
  • Bevan, M., Bancroft, I., Bent, E. et al. (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485488.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem.72, 248254.
  • Brandman, O. and Meyer, T. (2008) Feedback loops shape cellular signals in space and time. Science, 322, 390395.
  • Cecconi, D., Orzetti, S., Vandelle, E., Rinalducci, S., Zolla, L. and Delledonne, M. (2009) Protein nitration during defense response in Arabidopsis thaliana. Electrophoresis, 30, 24602468.
  • Chaki, M., Fernández-Ocaña, A.M., Valderrama, R., Carreras, A., Esteban, F.J., Luque, F., Gómez-Rodríguez, M.V., Begara-Morales, J.C., Corpas, F.J. and Barroso, J.B. (2009) Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. J. Exp. Bot.60, 42214234.
  • Chen, J.-H., Jiang, H.-W., Hsieh, E.-J., Chen, H.-Y., Chien, C.-T., Hsieh, H.-L. and Lin, T.-P. (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol.158, 340351.
  • Conrath, U. (2011) Molecular aspects of defence priming. Trends Plant Sci.16, 524531.
  • Corpas, F.J., Barroso, J.B., Carreras, A. et al. (2004) Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants. Plant Physiol.136, 27222733.
  • Corpas, F.J., Chaki, M., Fernández-Ocaña, A., Valderrama, R., Palma, J.M., Begara-Morales, J.C., Airaki, M., del Río, L.A. and Barroso, J.B. (2008) Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol.49, 17111722.
  • Corpas, F.J., Chaki, M., Leterrier, M. and Barroso, J.B. (2009) Protein tyrosine nitration: a new challenge in plants. Plant Signal Behav.4, 14.
  • Delledonne, M., Zeier, J., Marocco, A. and Lamb, C. (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA, 98, 1345413459.
  • Filippou, P., Antoniou, C. and Fotopoulos, V. (2011) Effect of drought and rewatering on the cellular status and antioxidant response of Medicago truncatula plants. Plant Signal Behav.6, 270277.
  • Forrester, M.T., Foster, M.W., Benhar, M. and Stamler, J.S. (2009) Detection of protein S-nitrosylation with the biotin-switch technique. Free Radic. Biol. Med.46, 119126.
  • Fotopoulos, V., Sanmartin, M. and Kanellis, A.K. (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J. Exp. Bot.57, 39333943.
  • Fotopoulos, V., De Tullio, M.C., Barnes, J. and Kanellis, A.K. (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J. Exp. Bot.59, 729737.
  • Freschi, L., Rodrigues, M.A., Silva Domingues, D., Purgatto, E., Van Sluys, M.-A., Magalhaes, J.R., Kaiser, W.M. and Mercier, H. (2010) Nitric oxide mediates the hormonal control of Crassulacean acid metabolism expression in young pineapple plants. Plant Physiol.152, 19711985.
  • Galis, I., Gaquerel, E., Pandey, S.P. and Baldwin, I.T. (2009) Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant Cell Environ.32, 617627.
  • Gansauge, S., Gansauge, F., Nussler, A.K., Rau, B., Poch, B., Schoenberg, M.H. and Beger, H.G. (1997) Exogenous, but not endogenous, nitric oxide increases proliferation rates in senescent human fibroblasts. FEBS Lett.410, 160164.
  • Gaupels, F., Furch, A.C.U., Will, T., Mur, L.A.J., Kogel, K.-H. and van Bel, A.J.E. (2008) Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol.178, 634646.
  • Grun, S., Lindermayr, C., Sell, S. and Durner, J. (2006) Nitric oxide and gene regulation in plants. J. Exp. Bot.57, 507516.
  • Gupta, K.J., Fernie., A.R., Kaiser, W.M. and van Dongen, J.T. (2011) On the origins of nitric oxide. Trends Plant Sci.16, 160168.
  • Hebbelmann, I., Selinski, J., Wehmeyer, C. et al. (2012) Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase. J. Exp. Bot.63, 14451459.
  • Hernández, J.A., Ferrer, M.A., Jiménez, A., Barceló, A.R. and Sevilla, F. (2001) Antioxidant systems and O2•−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol.127, 817831.
  • Holzmeister, C., Fröhlich, A., Sarioglu, H., Bauer, N., Durner, J. and Lindermayr, C. (2011) Proteomic analysis of defense response of wildtype Arabidopsis thaliana and plants with impaired NO homeostasis. Proteomics, 11, 16641683.
  • Horchani, F., Prévot, M., Boscari, A. et al. (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol.155, 10231036.
  • Jaffrey, S.R. and Snyder, S.H. (2001) The biotin switch method for detection of S-nitrosylated proteins. Sci. STKE86, PL1.
  • Jasid, S., Simontacchi, M., Bartoli, C.G. and Puntarulo, S. (2006) Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. Plant Physiol.142, 12461255.
  • Job, C., Rajjou, L., Lovigny, Y., Belghazi, M. and Job, D. (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol.138, 790802.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227, 680685.
  • Lindermayr, C., Saalbach, G. and Durner, J. (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol.137, 921930.
  • López-Climent, M.F., Arbona, V., Pérez-Clemente, R.M. and Gómez-Cadenas, A. (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ. Exp. Bot.62, 176184.
  • Lozano-Juste, J. and León, J. (2010) Enhanced abscisic acid-mediated responses in nia1 nia2 noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis. Plant Physiol.152, 891903.
  • Lozano-Juste, J., Colom-Moreno, R. and Leon, J. (2011) In vivo protein tyrosine nitration in Arabidopsis thaliana. J. Exp. Bot.62, 35013517.
  • Mahe, A., Grisvard, J. and Dron, M. (1992) Fungal and plant specific gene markers to follow the bean anthracnose infection process and normalize a bean chitinase mRNA induction. Mol. Plant Microbe Interact.5, 242248.
  • Malolepsza, U. and Rozalska, S. (2005) Nitric oxide and hydrogen peroxide in tomato resistance: nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. Plant Physiol. Biochem.43, 623635.
  • Mhadhbi, H., Fotopoulos, V., Mylona, P.V., Jebara, M., Aouani, M.E. and Polidoros, A.N. (2011) Role of antioxidant gene–enzyme responses in Medicago truncatula genotypes with different degrees of sensitivity to high salinity. Physiol. Plant.141, 201214.
  • Minas, I.S., Tanou, G., Belghazi, M., Job, D., Manganaris, G.A., Molassiotis, A. and Vasilakakis, M. (2012) Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. J. Exp. Bot.63, 24492464.
  • Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.7, 405410.
  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V., Vandepoele, K., Gollery, M., Shulaev, V. and Breusegem, F.V. (2011) ROS signaling: the new wave?Trends Plant Sci.16, 300309.
  • Molassiotis, A. and Fotopoulos, V. (2011) Oxidative and nitrosative signaling in plants. Two branches in the same tree?. Plant Signal Behav.6, 210214.
  • Molassiotis, A., Tanou, G. and Diamantidis, G. (2010) NO says more than ‘YES’ to salt tolerance: salt priming and systemic nitric oxide signaling in plants. Plant Signal Behav.5, 14.
  • Møller, I.M. and Kristensen, B.K. (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem. Photobiol. Sci.3, 730735.
  • Møller, I.M. and Sweetlove, L.J. (2010) ROS signalling – specificity is required. Trends Plant Sci.15, 370374.
  • Navrot, N., Finnie, C., Svensson, B. and Hägglund, P. (2011) Plant redox proteomics. J. Proteomics, 74, 14501462.
  • Neill, S. (2007) Interactions between abscisic acid, hydrogen peroxide and nitric oxide mediate survival responses during water stress. New Phytol.175, 46.
  • Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D. and Hancock, J.T. (2002) Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Exp. Bot.53, 12371247.
  • Oracz, K., El-Maarouf Bouteau, H., Farrant, J.M., Cooper, K., Belghazi, M., Job, C., Job, D., Corbineau, F. and Bailly, C. (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J.50, 452465.
  • Palmieri, C., Lindermayr, M., Bauwe, C., Steinhauser, H. and Durner, J. (2010) Regulation of plant glycine decarboxylase by S-nitrosylation and glutathionylation. Plant Physiol.152, 15141528.
  • Pazdzioch-Czochra, M. and Widenska, A. (2002) Spectrofluorimetric determination of hydrogen peroxide scavenging activity. Anal. Chim. Acta452, 177184.
  • Peshavariya, H.M., Dusting, G.J. and Selemidis, S. (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radical Res.41, 699712.
  • Pfaffl, M.W., Horgan, G.W. and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res.30, e36.
  • Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inzé, D. and Mittler, R. (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J.32, 329342.
  • Rodríguez-Serrano, M., Romero-Puertas, M.C., Zabalza, A., Corpas, F.J., Gómez, M., Del Río, L.A. and Sandalio, L.M. (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ.29, 15321544.
  • Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gómez, M., Del Rio, L.A. and Sandalio, L.M. (2004) Cadmium-induced subcellular accumulation of O2•− and H2O2 in pea leaves. Plant Cell Environ.27, 11221134.
  • Romero-Puertas, M.C., Laxa, M., Matte, A., Zaninotto, F., Finkemeier, I., Jones, A.M.E., Perazzolli, M., Vandelle, E., Dietz, K.-J. and Delledonne, M. (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell, 19, 41204130.
  • Romero-Puertas, M.C., Campostrini, N., Matte, A., Righetti, P.G., Perazzolli, M., Zolla, L., Roepstorff, P. and Delledonne, M. (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics, 8, 14591469.
  • Rusterucci, C., Espunya, M.C., Diaz, M., Chabannes, M. and Martinez, M.C. (2007) S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically. Plant Physiol.143, 12821292.
  • Spoel, S.H. and Loake, G.J. (2011) Redox-based protein modifications: the missing link in plant immune signaling. Curr. Opin. Plant Biol.14, 358364.
  • Stohr, C. and Stremlau, S. (2006) Formation and possible roles of nitric oxide in plant roots. J. Exp. Bot.57, 463470.
  • Tanou, G., Job, C., Rajjou, L., Arc, E., Belghazi, M., Diamantidis, G., Molassiotis, A. and Job, D. (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J.60, 795804.
  • Tanou, G., Job, C., Belghazi, M., Molassiotis, A., Diamantidis, G. and Job, D. (2010) Proteomic signatures uncover hydrogen peroxide and nitric oxide cross-talk signaling network in citrus plants. J. Proteome Res.9, 59946006.
  • Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M.N., Métraux, J.P. and Mauch-Mani, B. (2005) Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell17, 987999.
  • Tossi, V., Lamattina, L. and Cassia, R. (2009) An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytol.181, 871879.
  • Valderrama, R., Corpas, F., Carreras, A., Fernández-Ocaña, A., Chaki, M., Luque, F., Gómez-Rodríguez, M., Colmenero-Varea, P., del Río, L. and Barroso, J. (2007) Nitrosative stress in plants. FEBS Lett.581, 453461.
  • Wang, P., Du, Y., Li, Y., Ren, D. and Song, C.-P. (2010) Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell, 22, 29812998.
  • Wimalasekera, R., Villar, C., Begum, T. and Scherer, G.F.E. (2011) Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction. Mol. Plant6, 663678.
  • Wintermans, J.F. and de Mots, A. (1965) Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta, 109, 448453.
  • Wohlgemuth, H., Mittelstrass, K., Kschieschan, S., Bender, J., Weigel, H.-J., Overmyer, K., Kangasjärvi, J., Langebartels, C. and Sandermann, H. Jr (2002) Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone. Plant Cell Environ.25, 717726.
  • Yoda, H., Hiroi, Y. and Sano, H. (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol.142, 193206.
  • Ytterberg, A.J. and Jensen, O.N. (2010) Modification-specific proteomics in plant biology. J. Proteomics73, 22492266.
  • Zhou, B., Guo, Z., Xing, J. and Huang, B. (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J. Exp. Bot.56, 32233228.