SEARCH

SEARCH BY CITATION

References

  • Arpat, A.B., Magliano, P., Wege, S., Rouached, H., Stefanovic, A. and Poirier, Y. (2012) Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J.71, 479491.
  • Bassil, E., Ohto, M., Esumi, T., Tajima, H., Zhu, Z., Cagnac, O., Belmonte, M., Peleg, Z., Yamaguchi, T. and Blumwald, E. (2011) The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome-associated and necessary for plant growth and development. Plant Cell, 23, 224239.
  • Bucher, M. (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol.173, 1126.
  • Cao, H., Li, X. and Dong, X. (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl Acad. Sci. USA, 95, 65316536.
  • Chang, A.B., Lin, R., Keith, S.W., Tran, C.V. and Saier, M.H. Jr (2004) Phylogeny as a guide to structure and function of membrane transport proteins. Mol. Membr. Biol.21, 171181.
  • Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.16, 735743.
  • Collins, N.C., Thordal-Christensen, H., Lipka, V. et al. (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature, 425, 973977.
  • Cubero, B., Nakagawa, Y., Jiang, X.Y., Miura, K.J., Li, F., Raghothama, K.G., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. (2009) The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. Mol. Plant, 2, 535552.
  • Denecke, J., Carlsson, L.E., Vidal, S., Hoglund, A.S., Ek, B., van Zeijl, M.J., Sinjorgo, K.M. and Palva, E.T. (1995) The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell, 7, 391406.
  • Eschrich, W. and Currier, H.-B. (1964) Identification of callose by its diachrome and fluorochrome reactions. Stain Technology, 39, 303307.
  • Espen, L., Dell’Orto, M., De Nisi, P. and Zocchi, G. (2000) Metabolic responses in cucumber (Cucumis sativus L.) roots under Fe-deficiency: a 31P-nuclear magnetic resonance in vivo study. Planta, 210, 985992.
  • Fischer, K., Kammerer, B., Gutensohn, M., Arbinger, B., Weber, A., Häusler, R. and Flügge, U.I. (1997) A new class of plastidic phosphate translocator: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell, 9, 453462.
  • Foster, C.E., Martin, T.M. and Pauly, M. (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J. Vis. Exp.12, 1837.
  • Frank, J., Kaulfürst-Soboll, H., Rips, S., Koiwa, H. and von Schaewen, A. (2008) Comparative analyses of Arabidopsis complex glycan1 mutants and genetic interaction with staurosporin and temperature sensitive3a. Plant Physiol.148, 13541367.
  • Gleave, A.P. (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol., 20, 12031207.
  • Guo, B., Irigoyen, S., Fowler, T.B. and Versaw, W.K. (2008a) Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. Plant Signal. Behav.3, 784790.
  • Guo, B., Jin, Y., Wussler, C., Blancaflor, E.B., Motes, C.M. and Versaw, W.K. (2008b) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol.177, 889898.
  • Handford, M.G., Sicilia, F., Brandizzi, F., Chung, J.H. and Dupree, P. (2004) Arabidopsis thaliana expresses multiple Golgi-localised nucleotide-sugar transporters related to GONST1. Mol. Genet. Genomics, 272, 397410.
  • Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S. and Mullineaux, P.M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol.42, 819832.
  • Hering, K.W., Karaveg, K., Moremen, K.W. and Pearson, W.H. (2005) A practical synthesis of kifunensine analogues as inhibitors of endoplasmic reticulum α-mannosidase I. J. Org. Chem.70, 98929904.
  • Hirschberg, C.B. (1997) Transporters of nucleotide sugars, nucleotide sulfate and ATP in the Golgi apparatus membrane: where next?Glycobiology, 7, 169171.
  • Jung, B., Hoffmann, C. and Möhlmann, T. (2011) Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. Plant J.65, 703711.
  • Kammerer, B., Fischer, K., Hilpert, B., Schubert, S., Gutensohn, M., Weber, A. and Flügge, U.I. (1998) Molecular characterisation of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter. Plant Cell, 10, 105117.
  • Kang, J.S., Frank, J., Kang, C.H. et al. (2008) Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc. Natl Acad. Sci. USA, 105, 59335938.
  • Kariola, T., Brader, G., Li, J. and Palva, E.T. (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 17, 282294.
  • Kime, M.J., Ratcliffe, R.G. and Loughman, B.C. (1982) The application of 31P nuclear magnetic resonance to higher plant tissue. J. Exp. Bot.33, 670681.
  • Koiwa, H., Li, F., McCully, M.G. et al. (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell, 15, 22732284.
  • Krebs, M., Beyhl, D., Gorlich, E., Al-Rasheid, K.A., Marten, I., Stierhof, Y.D., Hedrich, R. and Schumacher, K. (2010) Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl Acad. Sci. USA, 107, 32513256.
  • Kunkel, B.N., Bent, A.F., Dahlbeck, D., Innes, R.W. and Staskawicz, B.J. (1993) RPS2, an Arabidopsis disease resistance locus specifying recognition of Pseudomonas syringae strains expressing the avirulence gene avrRpt2. Plant Cell, 5, 865875.
  • Kwon, C., Neu, C., Pajonk, S. et al. (2008) Co-option of a default secretory pathway for plant immune responses. Nature, 451, 835840.
  • Lai, E., Teodoro, T. and Volchuk, A. (2007) Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology, 22, 193201.
  • Leroch, M., Kirchberger, S., Haferkamp, I., Wahl, M., Neuhaus, H.E. and Tjaden, J. (2005) Identification and characterization of a novel plastidic adenine nucleotide uniporter from Solanum tuberosum. J. Biol. Chem.280, 1799218000.
  • Liu, J.X. and Howell, S.H. (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell, 22, 29302942.
  • Maeda, Y. and Kinoshita, T. (2010) The acidic environment of the Golgi is critical for glycosylation and transport. Methods Enzymol.480, 495510.
  • Mandal, D.K. and Brewer, C.F. (1993) Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose-type glycopeptides. Biochemistry, 32, 51165120.
  • Martinoia, E., Maeshima, M. and Neuhaus, H.E. (2007) Vacuolar transporters and their essential role in plant metabolism. J. Exp. Bot.58, 83102.
  • Mazel, A., Leshem, Y., Tiwari, B.S. and Levine, A. (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol.134, 118128.
  • Meuwly, P. and Metraux, J.P. (1993) Ortho-anisic acid as internal standard for the simultaneous quantitation of salicylic acid and its putative biosynthetic precursors in cucumber leaves. Anal. Biochem.214, 500505.
  • Miyaji, T., Echigo, N., Hiasa, M., Senoh, S., Omote, H. and Moriyama, Y. (2008) Identification of a vesicular aspartate transporter. Proc. Natl Acad. Sci. USA, 105, 1172011724.
  • Morita-Yamamuro, C., Tsutsui, T., Sato, M. et al. (2005) The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol.46, 902912.
  • Müller, R., Morant, M., Jarmer, H., Nilsson, L. and Nielsen, T.H. (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol.143, 156171.
  • Nakamura, Y., Koizumi, R., Shui, G., Shimojima, M., Wenk, M.R., Ito, T. and Ohta, H. (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc. Natl Acad. Sci. USA, 106, 2097820983.
  • Nebenführ, A., Ritzenthaler, C. and Robinson, D.G. (2002) Brefeldin A: deciphering an enigmatic inhibitor of secretion. Plant Physiol.130, 11021108.
  • Negrutiu, I., Shillito, R., Potrykus, I., Biasini, G. and Sala, F. (1987) Hybrid genes in the analysis of transformation conditions. Plant Mol. Biol.8, 363373.
  • Peiter, E., Montanini, B., Gobert, A., Pedas, P., Husted, S., Maathuis, F.J., Blaudez, D., Chalot, M. and Sanders, D. (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc. Natl Acad. Sci. USA, 104, 85328537.
  • Petersen, M., Brodersen, P., Naested, H. et al. (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103, 11111120.
  • Pratt, J., Boisson, A.M., Gout, E., Bligny, R., Douce, R. and Aubert, S. (2009) Phosphate (Pi) starvation effect on the cytosolic Pi concentration and Pi exchanges across the tonoplast in plant cells: an in vivo31P-nuclear magnetic resonance study using methylphosphonate as a Pi analog. Plant Physiol.151, 16461657.
  • Rausch, C. and Bucher, M. (2002) Molecular mechanisms of phosphate transport in plants. Planta, 216, 2337.
  • Reimer, R.J. and Edwards, R.H. (2004) Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflügers Arch.447, 629635.
  • Reiser, J., Linka, N., Lemke, L., Jeblick, W. and Neuhaus, H.E. (2004) Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis thaliana. Plant Physiol.136, 35243536.
  • Roberts, J.K.M., Ray, P.M., Wade-Jardetzky, N. and Jardetzky, O. (1980) Estimation of cytoplasmic and vacuolar pH in higher plant cells by 31P NMR. Nature, 283, 870872.
  • Roth, C., Menzel, G., Petétot, J.M., Rochat-Hacker, S. and Poirier, Y. (2004) Characterization of a protein of the plastid inner envelope having homology to animal inorganic phosphate, chloride and organic-anion transporters. Planta, 218, 406416.
  • Saint-Jore, C.M., Evins, J., Batoko, H., Brandizzi, F., Moore, I. and Hawes, C. (2002) Redistribution of membrane proteins between the Golgi apparatus and endoplasmic reticulum in plants is reversible and not dependent on cytoskeletal networks. Plant J.29, 661678.
  • Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., Yamamoto, A. and Moriyama, Y. (2008) Identification of a vesicular nucleotide transporter. Proc. Natl Acad. Sci. USA, 105, 56835686.
  • Schoberer, J., Vavra, U., Stadlmann, J., Hawes, C., Mach, L., Steinkellner, H. and Strasser, R. (2009) Arginine/lysine residues in the cytoplasmic tail promote ER export of plant glycosylation enzymes. Traffic, 10, 101115.
  • Shah, J. (2003) The salicylic acid loop in plant defense. Curr. Opin. Plant Biol.6, 365371.
  • Shi, H., Kim, Y., Guo, Y., Stevenson, B. and Zhu, J.K. (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell, 15, 1932.
  • Shin, H., Shin, H.S., Dewbre, G.R. and Harrison, M.J. (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J.39, 629642.
  • Spickett, C.M., Smirnoff, N. and Ratcliffe, R.G. (1992) Metabolic response of maize roots to hyperosmotic shock: an in vivo31P nuclear magnetic resonance study. Plant Physiol.99, 856863.
  • Stefanovic, A., Arpat, A.B., Bligny, R., Gout, E., Vidoudez, C., Bensimon, M. and Poirier, Y. (2011) Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. Plant J.66, 689699.
  • Thulke, O.U. and Conrath, U. (1998) Salicylic acid has a dual role in the activation of defense related genes in parsley. Plant J.14, 3542.
  • Ticconi, C.A., Lucero, R.D., Sakhonwasee, S., Adamson, A.W., Creff, A., Nussaume, L., Desnos, T. and Abel, S. (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc. Natl Acad. Sci. USA, 106, 1417414179.
  • Uemura, T., Kim, H., Saito, C., Ebine, K., Ueda, T., Schulze-Lefert, P. and Nakano, A. (2012) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc. Natl Acad. Sci. USA, 109, 17841789.
  • Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell, 4, 645656.
  • Wang, Y., Ribot, C., Rezzonico, E. and Poirier, Y. (2004) Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol.135, 400411.
  • Wang, H.X., Weerasinghe, R.R., Perdue, T.D., Cakmakci, N.G., Taylor, J.P., Marzluff, W.F. and Jones, A.M. (2006) A Golgi-localized hexose transporter is involved in heterotrimeric G protein-mediated early development in Arabidopsis. Mol. Biol. Cell, 17, 42574269.
  • Weber, A.P., Schwacke, R. and Flügge, U.I. (2005) Solute transporters of the plastid envelope membrane. Annu. Rev. Plant Biol.56, 133164.
  • Whalen, M.C., Innes, R.W., Bent, A.F. and Staskawicz, B.J. (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell, 3, 4959.
  • Wick, P., Gansel, X., Oulevey, C., Page, V., Studer, I., Dürst, M. and Sticher, L. (2003) The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation. Plant Physiol.132, 343351.
  • Wilson, I.B.H., Harthill, J.E., Mullin, N.P., Ashford, D.A. and Altmann, F. (1998) Core β-1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology, 8, 651661.
  • Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol.136, 26212632.