SEARCH

SEARCH BY CITATION

References

  • Alkan, C., Sajjadian, S. and Eichler, E.E. (2011) Limitations of next-generation genome sequence assembly. Nat. Methods, 8, 6165.
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol.215, 403410.
  • Arumuganathan, K. and Earle, E.D. (1991) Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep.9, 208218.
  • Baucom, R.S., Estill, J.C., Chaparro, C., Upshaw, N., Jogi, A., Deragon, J.M., Westerman, R.P., SanMiguel, P.J. and Bennetzen, J.L. (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet.5, e1000732.
  • Bennett, M.D. and Leitch, I.J. (1995) Nuclear DNA amounts in angiosperms. Ann. Bot.76, 113176.
  • Bennetzen, J.L. (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol.42, 251269.
  • Bennetzen, J.L. (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica, 115, 2936.
  • Bennetzen, J.L., Ma, J. and Devos, K.M. (2005) Mechanisms of recent genome size variation in flowering plants. Ann. Bot.95, 127132.
  • Birney, E., Clamp, M. and Durbin, R. (2004) GeneWise and Genomewise. Genome Res.14, 988995.
  • Boeke, J.D. and Corces, V.G. (1989) Transcription and reverse transcription of retrotransposons. Annu. Rev. Microbiol.43, 403434.
  • Boeke, J.D., Styles, C.A. and Fink, G.R. (1986) Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol.6, 35753581.
  • Bowman, E.H., Pathak, V.K. and Hu, W.S. (1996) Efficient initiation and strand transfer of polypurine tract-primed plus-strand DNA prevent strand transfer of internally initiated plus-strand DNA. J. Virol.70, 16871694.
  • Chavanne, F., Zhang, D.X., Liaud, M.F. and Cerff, R. (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol. Biol.37, 363375.
  • Coffin, J.M. (1990) Retroviridae and their replication. In Virology (Fields, B.N. and Knipe, D.M., eds). New York: Raven Press, pp. 14371500.
  • Dechyeva, D. and Schmidt, T. (2006) Molecular organization of terminal repetitive DNA in Beta species. Chromosome Res.14, 881897.
  • Desel, C., Jung, C., Cai, D.G., Kleine, M. and Schmidt, T. (2001) High-resolution mapping of YACs and the single-copy gene Hs1pro-1 on Beta vulgaris chromosomes by multi-colour fluorescence in situ hybridization. Plant Mol. Biol.45, 113122.
  • Devos, K.M., Brown, J.K.M. and Bennetzen, J.L. (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res.12, 10751079.
  • Dohm, J.C., Lange, C., Holtgrawe, D., Sorensen, T.R., Borchardt, D., Schulz, B., Lehrach, H., Weisshaar, B. and Himmelbauer, H. (2012) Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). Plant J.70, 528540.
  • Du, J., Tian, Z., Bowen, N.J., Schmutz, J., Shoemaker, R.C. and Ma, J. (2009) Bifurcation and enhancement of autonomous–nonautonomous retrotransposon partnership through LTR swapping in soybean. Plant Cell, 21, 4861.
  • Du, J., Tian, Z., Hans, C.S., Laten, H.M., Cannon, S.B., Jackson, S.A., Shoemaker, R.C. and Ma, J. (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J.63, 584598.
  • Edgar, R. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 19, 113.
  • Eickbush, T.H. (1994) Origin and evolutionary relationship of retroelements. In The Evolutionary Biology of Viruses (Morse, S.S., ed.). New York: Raven Press, pp. 121157.
  • Eickbush, T.H. and Malik, H.S. (2002) Origins and evolution of retrotransposons. In Mobile DNA II (Craig, N.L., ed.). Washington, DC: ASM Press, pp. 11111144.
  • Fauquet, C. (2005) Virus Taxonomy: Classification and Nomenclature of Viruses: 8th ICTV Report. San Diego, CA: Academic Press/Elsevier.
  • Fauquet, C.M. and Mayo, M.A. (2001) The 7th ICTV Report. Virol. Div. News, 146, 189194.
  • Fayet, O., Ramond, P., Polard, P., Prere, M.F. and Chandler, M. (1990) Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences?Mol. Microbiol.4, 17711777.
  • Feng, Y.X., Moore, S.P., Garfinkel, D.J. and Rein, A. (2000) The genomic RNA in Ty1 virus-like particles is dimeric. J. Virol.74, 1081910821.
  • Fischer, H.E. (1989) Origin of the ‘Weisse Schlesische Ruebe’ (white beet) resynthesis of sugar beet. Euphytica, 41, 7580.
  • Flavell, R.B., Bennett, M.D., Smith, J.B. and Smith, D.B. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet.12, 257269.
  • Gallo, S.A., Finnegan, C.M., Viard, M., Raviv, Y., Dimitrov, A., Rawat, S.S., Puri, A., Durell, S. and Blumenthal, R. (2003) The HIV Env-mediated fusion reaction. Biochim. Biophys. Acta, 1614, 3650.
  • Geyt, J.P.C., Lange, W., Oleo, M. and Bock, T.S.M. (1990) Natural variation within the genus Beta and its possible use for breeding sugar beet: a review. Euphytica, 49, 5776.
  • Gindullis, F., Dechyeva, D. and Schmidt, T. (2001) Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis. Genome, 44, 846855.
  • Heitkam, T. and Schmidt, T. (2009) BNR – a LINE family from Beta vulgaris contains an RRM domain in open reading frame 1 and defines a L1 subclade present in diverse plant genomes. Plant J.59, 872882.
  • Heslop-Harrison, J.S., Schwarzacher, T., Anamthawat-Jonsson, K., Leitch, A.R., Shi, M. and Leitch, I.J. (1991) In situ hybridization with automated chromosome denaturation. Technique, 3, 109116.
  • Hofmann, K. and Stoffel, W. (1993) TMbase – a database of membrane spanning proteins segments. Biol. Chem. Hoppe Seyler, 347, 166.
  • Hull, R. (2001) Classifying reverse transcribing elements: a proposal and a challenge to the ICTV. Arch. Virol.146, 22552261.
  • Jacobs, G., Dechyeva, D., Menzel, G., Dombrowski, C. and Schmidt, T. (2004) Molecular characterization of Vulmar1, a complete mariner transposon of sugar beet and diversity of mariner- and En/Spm-like sequences in the genus Beta. Genome, 47, 11921201.
  • Jiang, N., Jordan, I.K. and Wessler, S.R. (2002) Dasheng and RIRE2. A nonautonomous long terminal repeat element and its putative autonomous partner in the rice genome. Plant Physiol.130, 16971705.
  • Jordan, I.K. and McDonald, J.F. (1998) Evidence for the role of recombination in the regulatory evolution of Saccharomyces cerevisiae Ty elements. J. Mol. Evol.47, 1420.
  • Jordan, I.K. and McDonald, J.F. (1999) Phylogenetic perspective reveals abundant Ty1/Ty2 hybrid elements in the Saccharomyces cerevisiae genome. Mol. Biol. Evol.16, 419422.
  • Koch, M.A., Haubold, B. and Mitchell-Olds, T. (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol. Biol. Evol.17, 14831498.
  • Krogh, A., Larsson, B., von Heijne, G. and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol.305, 567580.
  • Kumar, A. (1998) The evolution of plant retroviruses: moving to green pastures. Trends Plant Sci.3, 371374.
  • Kumar, A. and Bennetzen, J. (1999) Plant retrotransposons. Annu. Rev. Genet.33, 479532.
  • Kumekawa, N., Hosouchi, T., Tsuruoka, H. and Kotani, H. (2000) The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 5. DNA Res.7, 315321.
  • Lange, C., Mittermayr, L., Dohm, J.C., Holtgrawe, D., Weisshaar, B. and Himmelbauer, H. (2010) High-throughput identification of genetic markers using representational oligonucleotide microarray analysis. Theor. Appl. Genet.121, 549565.
  • Laten, H.M., Majumdar, A. and Gaucher, E.A. (1998) SIRE-1, a copia/Ty1-like retroelement from soybean, encodes a retroviral envelope-like protein. Proc. Natl Acad. Sci. USA, 95, 68976902.
  • Lerat, E. and Capy, P. (1999) Retrotransposons and retroviruses: analysis of the envelope gene. Mol. Biol. Evol.16, 11981207.
  • Ma, J. and Bennetzen, J.L. (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl Acad. Sci. USA, 101, 1240412410.
  • Ma, J., Devos, K.M. and Bennetzen, J.L. (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res.14, 860869.
  • Malik, H. and Eickbush, T. (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J. Virol.73, 51865190.
  • Marco, A. and Marín, I. (2005) Retrovirus-like elements in plants. Recent Res. Dev. Plant Sci.3, 1524.
  • Marco, A. and Marín, I. (2008) How Athila retrotransposons survive in the Arabidopsis genome. BMC Genomics, 14, 219.
  • McGrath, J.M., Shaw, R.S., de los Reyes, B.G. and Weiland, J.J. (2004) Construction of a sugar beet BAC library from a hybrid with diverse traits. Plant Mol. Biol. Rep.22, 2328.
  • Menzel, G., Dechyeva, D., Keller, H., Lange, C., Himmelbauer, H. and Schmidt, T. (2006) Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L. Chromosome Res.14, 831844.
  • Menzel, G., Dechyeva, D., Wenke, T., Holtgrawe, D., Weisshaar, B. and Schmidt, T. (2008) Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris). Ann. Bot.102, 521530.
  • Miguel, C., Simões, M., Oliveira, M.M. and Rocheta, M. (2008) Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster). J. Mol. Evol.67, 517525.
  • Pelissier, T., Tutois, S., Deragon, J.M., Tourmente, S., Genestier, S. and Picard, G. (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol. Biol.29, 441452.
  • Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. (1984) Ribosomal DNA spacer-length polymorphisms in barley – Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl Acad. Sci. USA, 81, 80148018.
  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • SanMiguel, P. and Bennetzen, J.L. (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann. Bot.82, 3744.
  • SanMiguel, P., Tikhonov, A., Jin, Y.K. et al. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science, 274, 765768.
  • Schmidt, T. and Metzlaff, M. (1991) Cloning and characterization of a Beta vulgaris satellite DNA family. Gene, 101, 247250.
  • Schmidt, T., Jung, C. and Metzlaff, M. (1991) Distribution and evolution of two satellite DNAs in the genus Beta. Theor. Appl. Genet.82, 793799.
  • Schmidt, T., Schwarzacher, T. and Heslop-Harrison, J.S. (1994) Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor. Appl. Genet.88, 629636.
  • Schulte, D., Cai, D., Kleine, M., Fan, L., Wang, S. and Jung, C. (2006) A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol. Gen. Genomics, 275, 504511.
  • Shirasu, K., Schulman, A.H., Lahaye, T. and Schulze-Lefert, P. (2000) A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res.10, 908915.
  • Slotkin, R. and Martienssen, R. (2007) Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet.8, 272285.
  • Song, S.U., Gerasimova, T., Kurkulos, M., Boeke, J.D. and Corces, V.G. (1994) An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev.8, 20462057.
  • Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol.24, 15961599.
  • Temin, H.M. (1980) Origin of retroviruses from cellular moveable genetic elements. Cell, 21, 599600.
  • Vicient, C.M., Kalendar, R. and Schulman, A.H. (2001) Envelope-class retrovirus-like elements are widespread, transcribed and spliced, and insertionally polymorphic in plants. Genome Res.11, 20412049.
  • Weber, B. and Schmidt, T. (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain. Chromosome Res.17, 379396.
  • Weber, B., Wenke, T., Frömmel, U., Schmidt, T. and Heitkam, T. (2010) The Ty1-copia families SALIRE and Cotzilla populating the Beta vulgaris genome show remarkable differences in abundance, chromosomal distribution, and age. Chromosome Res.18, 247263.
  • Wenke, T., Holtgräwe, D., Horn, A.V., Weisshaar, B. and Schmidt, T. (2009) An abundant and heavily truncated non-LTR retrotransposon (LINE) family in Beta vulgaris. Plant Mol. Biol.71, 585597.
  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M. and Panaud, O. (2007) Guidelines: a unified classification system for eukaryotic transposable elements. Nature Rev. Genet.8, 973982.
  • Wright, D.A. and Voytas, D.F. (1998) Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics, 149, 703715.
  • Wright, D.A. and Voytas, D.F. (2002) Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses. Genome Res.12, 122131.
  • Xiong, Y. and Eickbush, T.H. (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J.9, 33533362.
  • Zakrzewski, F., Wenke, T., Holtgraewe, D., Weisshaar, B. and Schmidt, T. (2010) Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris. BMC Plant Biol.10, 8.