Effective classification of the prevalence of Schistosoma mansoni

Authors


  • Both authors contributed equally to this work.

Corresponding Author Shira A. Mitchell, Department of Biostatistics, Harvard University, 655 Huntington Avenue, Boston, MA 02115, USA. E-mail: smitchel@hsph.harvard.edu

Abstract

Objective  To present an effective classification method based on the prevalence of Schistosoma mansoni in the community.

Methods  We created decision rules (defined by cut-offs for number of positive slides), which account for imperfect sensitivity, both with a simple adjustment of fixed sensitivity and with a more complex adjustment of changing sensitivity with prevalence. To reduce screening costs while maintaining accuracy, we propose a pooled classification method. To estimate sensitivity, we use the De Vlas model for worm and egg distributions. We compare the proposed method with the standard method to investigate differences in efficiency, measured by number of slides read, and accuracy, measured by probability of correct classification.

Results  Modelling varying sensitivity lowers the lower cut-off more significantly than the upper cut-off, correctly classifying regions as moderate rather than lower, thus receiving life-saving treatment. The classification method goes directly to classification on the basis of positive pools, avoiding having to know sensitivity to estimate prevalence. For model parameter values describing worm and egg distributions among children, the pooled method with 25 slides achieves an expected 89.9% probability of correct classification, whereas the standard method with 50 slides achieves 88.7%.

Conclusions  Among children, it is more efficient and more accurate to use the pooled method for classification of S. mansoni prevalence than the current standard method.

Abstract

Objectif:  Présenter une méthode de classification efficace basée sur la prévalence de S. mansoni dans la communauté.

Méthodes:  Nous avons créé des règles de décision (définies par des seuils pour le nombre de lames positives), qui représentent la sensibilité imparfaite, à la fois avec un simple ajustement de la sensibilité fixe et avec un ajustement plus complexe pour la sensibilité variant avec la prévalence. Pour réduire les coûts du dépistage tout en maintenant la précision, nous proposons une méthode de classification poolée. Pour estimer la sensibilité, nous utilisons le modèle de De Vlas pour les distributions des vers et des œufs. Nous comparons la méthode proposée à la méthode standard pour investiguer sur les différences d’efficacité, mesurée par le nombre de lames lues et la précision, mesurée par la probabilité de classification correcte.

Résultats:  La modélisation de la sensibilité variante abaisse le seuil inférieur de façon plus significative que le seuil supérieur, classant correctement les régions comme modérées plutôt que comme plus faibles, recevant ainsi un traitement sauvant des vies. La méthode de classification va directement à la classification sur base des pools positifs, en évitant d’avoir à connaître la sensibilité pour estimer la prévalence. Pour les valeurs des paramètres du modèle décrivant les distributions des vers et des œufs chez les enfants, la méthode poolée avec 25 lames permet d’obtenir une probabilité attendue de 89,9% de classification correcte, alors que la méthode standard avec 50 lames atteint 88,7%.

Conclusions:  Chez les enfants, il est plus efficace et plus précis d’utiliser la méthode poolée pour la classification de S. mansoni que la méthode standard actuelle.

Abstract

Objetivo:  Presentar un método de clasificación efectivo basado en la prevalencia de S. mansoni en la comunidad.

Métodos:  Hemos creado reglas de decisión (definidas por puntos de corte para números de láminas positivas), que tienen en cuenta una sensibilidad imperfecta, tanto con un ajuste simple para una sensibilidad fija como con un ajuste más complejo de sensibilidad cambiante con prevalencia. Para reducir los costes de evaluación al tiempo que se mantiene la precisión, proponemos un método de clasificación por grupos (pooled). Para estimar la sensibilidad, hemos utilizado el modelo De Vlas para la distribución del gusano y los huevos. Hemos comparado el método propuesto al del método estándar para investigar diferencias en eficiencia, medidas por número de láminas leidas, y precisión, medidas por la probabilidad de clasificación correcta.

Resultados:  El modelar sensibilidades variables disminuye el punto de corte inferior de forma más significativa que el punto de corte superior, clasificando de forma correcta las regiones como moderadas, más que bajas, y por lo tanto recibiendo tratamiento que puede salvar vidas. El método de clasificación lleva a una clasificación basada en los grupos positivos, evitando la necesidad de tener que conocer la sensibilidad para calcular la prevalencia. Para los valores de parámetros del modelo que describen la distribución de los gusanos y huevos entre niños, el método por grupos con 25 láminas consigue una probabilidad esperada del 89.9% de clasificación correcta, mientras que el método estándar con 50 láminas alcanza un 88.7%.

Conclusiones:  Para la clasificación de prevalencia de S. mansoni entre niños, es más eficiente y más preciso utilizar el método por grupos que el método estándar actual.

Ancillary