• Alien plants;
  • biological invasions;
  • Central Europe;
  • forestry;
  • invasive species;
  • prediction;
  • weed risk assessment


To assess the validity of previously developed risk assessment schemes in the conditions of Central Europe, we tested (1) Australian weed risk assessment scheme (WRA; Pheloung et al. 1999); (2) WRA with additional analysis by Daehler et al. (2004); and (3) decision tree scheme of Reichard and Hamilton (1997) developed in North America, on a data set of 180 alien woody species commonly planted in the Czech Republic. This list included 17 invasive species, 9 naturalized but non-invasive, 31 casual aliens, and 123 species not reported to escape from cultivation. The WRA model with additional analysis provided best results, rejecting 100% of invasive species, accepting 83.8% of non-invasive, and recommending further 13.0% for additional analysis. Overall accuracy of the WRA model with additional analysis was 85.5%, higher than that of the basic WRA scheme (67.9%) and the Reichard–Hamilton model (61.6%). Only the Reichard–Hamilton scheme accepted some invaders. The probability that an accepted species will become an invader was zero for both WRA models and 3.2% for the Reichard–Hamilton model. The probability that a rejected species would have been an invader was 77.3% for both WRA models and 24.0% for the Reichard–Hamilton model. It is concluded that the WRA model, especially with additional analysis, appears to be a promising template for building a widely applicable system for screening out invasive plant introductions.