SEARCH

SEARCH BY CITATION

REFERENCES

  • Andrews, M. J., A. P. L. Minford and J Riley (1996). On comparing macroeconomic forecasts using forecast encompassing tests. Oxford Bulletin of Economics and Statistics 58, 279305.
  • Bates, J. M. and C. W. J. Granger (1969). The combination of forecasts. Operations Research Quarterly 20, 45168.
  • Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics 19, 46574.
  • Chatfield, C. (1993). Calculating interval forecasts. Journal of Business and Economic Statistics 11, 12135.
  • Chevillon, G. (2000). Multi-step estimation for forecasting non-stationary processes. M. Phil. Thesis, Economics Department, University of Oxford .
  • Chong, Y. Y. and D. F. Hendry (1986). Econometric evaluation of linear macro-economic models. Review of Economic Studies 53, 67190.
  • Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review 39, 84162.
  • Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting 5, 55983.
  • Clements, M. P. and D. F. Hendry (1993). On the limitations of comparing mean squared forecast errors. Journal of Forecasting 12, 61737.
  • Clements, M. P. and D. F. Hendry (1999). Forecasting Non-stationary Economic Time Series. Cambridge , MA : MIT Press.
  • Clements, M. P. and J. Smith (2000). Evaluating the forecast densities of linear and non-linear models: Applications to output growth and unemployment. Journal of Forecasting 19, 25576.
  • Clements, M. P. and N. Taylor (2001). Bootstrapping prediction intervals for autoregressive models. International Journal of Forecasting 17, 24767.
  • Clements, M. P. and N. Taylor (2003). Evaluating prediction intervals for high-frequency data. Journal of Applied Econometrics 18, 44556.
  • Coulson, N. F. and R. P. Robins (1993). Forecast combination in a dynamic setting. Journal of Forecasting 12, 6368.
  • Diebold, F. X. (1988). Serial correlation and the combination of forecasts. Journal of Business and Economic Statistics 6, 10511.
  • Diebold, F. X. (1989). Forecast combination and encompassing: Reconciling two divergent literatures. International Journal of Forecasting 5, 58992.
  • Diebold, F. X., T. A. Gunther and A. S. Tay (1998). Evaluating density forecasts: With applications to financial risk management. International Economic Review 39, 86383.
  • Diebold, F. X., J. Y. Hahn and A. S. Tay (1999a). Multivariate density forecast evaluation and calibration in financial risk management: High frequency returns on foreign exchange. Review of Economics and Statistics 81, 66173.
  • Diebold, F. X. and J. A. Lopez (1996). Forecast evaluation and combination. In G. S.Maddala and C. R.Rao (Eds.), Handbook of Statistics, Volume 14, pp. 24168. Amsterdam : North-Holland.
  • Diebold, F. X., A. S. Tay and K. F. Wallis (1999b). Evaluating density forecasts of inflation: The Survey of Professional Forecasters. In R. F.Engle and H.White (Eds.), Festschrift in Honor of C. W. J. Granger, pp. 7690. Oxford : Oxford University Press.
  • Doornik, J. A. and H. Hansen (1994). A practical test for univariate and multivariate normality. Discussion paper, Nuffield College .
  • Ericsson, N. R. (1992). Parameter constancy, mean square forecast errors, and measuring forecast performance: An exposition, extensions, and illustration. Journal of Policy Modeling 14, 46595.
  • Ericsson, N. R. and J. Marquez (1993). Encompassing the forecasts of U.S. trade balance models. Review of Economics and Statistics 75, 1931.
  • Fildes, R. and K. Ord (2002). Forecasting competitions—their role in improving forecasting practice and research. In M. P.Clements and D. F.Hendry (Eds.), A Companion to Economic Forecasting, pp. 32253. Oxford : Blackwells.
  • Forni, M., M. Hallin, M. Lippi and L. Reichlin (2000). The generalized factor model: Identification and estimation. Review of Economics and Statistics 82, 54054.
  • Frisch, R. and F. V. Waugh (1933). Partial time regression as compared with individual trends. Econometrica 1, 22123.
  • Gallo, G. M. and R. S. Mariano (1994). Combining provisional data and forecasts in nonlinear models. Working papers n.47, Dipartimento Statistico, Universita' Degli Studi Di Firenze .
  • Granger, C. W. J. (1989). Combining forecasts—Twenty years later. Journal of Forecasting 8, 16773.
  • Granger, C. W. J. and R. Ramanathan (1984). Improved methods of combining forecasts. Journal of Forecasting 3, 197204.
  • Granger, C. W. J., H. White and M. Kamstra (1989). Interval forecasting: An analysis based upon ARCH quantile estimators. Journal of Econometrics 40, 8796.
  • Harvey, D. I., S. Leybourne and P. Newbold (1998). Tests for forecast encompassing. Journal of Business and Economic Statistics 16, 25459.
  • Hendry, D. F. (2000). On detectable and non-detectable structural change. Structural Change and Economic Dynamics 11, 4565.
  • Hendry, D. F. and M. P. Clements (2001). Forecasting using factor models. Mimeo, Economics Department, University of Oxford .
  • Hendry, D. F. and M. P. Clements (2003). Economic forecasting: Some lessons from recent research. Economic Modelling 20, 30129.
  • Hendry, D. F. and J. A. Doornik (1997). The implications for econometric modelling of forecast failure. Scottish Journal of Political Economy 44, 43761.
  • Hoogstrate, A. J., F. C. Palm and G. A. Pfann (2000). Pooling in dynamic panel-data models: an application to forecasting GDP growth rates. Journal of Business and Economic Statistics 18, 27483.
  • Judge, G. G. and M. E. Bock (1978). The Statistical Implications of Pre-Test and Stein-Rule Estimators in Econometrics. Amsterdam : North Holland Publishing Company .
  • Kim, S., N. Shephard and S. Chib (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 81, 36193.
    Direct Link:
  • Koenker, R. and G. Bassett (1978). Regression quantiles. Econometrica 46, 3355.
  • Koenker, R. and G. Bassett (1982). Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50, 4362.
  • Lu, M. and G. E. Mizon (1991). Forecast encompassing and model evaluation. In P.Hackl and A. H.Westlund (Eds.), Economic Structural Change, Analysis and Forecasting, pp. 12338. Berlin : Springer-Verlag.
  • Newbold, P. and C. W. J. Granger (1974). Experience with forecasting univariate time series and the combination of forecasts. Journal of the Royal Statistical Society A 137, 13146.
  • Newbold, P. and D. I. Harvey (2002). Forecasting combination and encompassing. In M. P.Clements and D. F.Hendry (Eds.), A Companion to Economic Forecasting, pp. 26883. Oxford : Blackwells.
  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics 23, 47072.
  • Shephard, N. (1994). Partial non-Gaussian state space. Biometrika 81, 11531.
  • Stock, J. H. and M. W. Watson (1999). A comparison of linear and nonlinear models for forecasting macroeconomic time series. In R. F.Engle and H.White (Eds.), Cointegration, Causality and Forecasting, pp. 144. Oxford : Oxford University Press.
  • Tay, A. S. and K. F. Wallis (2000). Density forecasting: A survey. Journal of Forecasting 19, 23554.
  • Wall, K. D. and C. Correia (1989). A preference-based method for forecast combination. Journal of Forecasting 8, 26992.
  • Wallis, K. F. (2003). Chi-squared tests of interval and density forecasts, and the Bank of England's fan charts. International Journal of Forecasting 19, 16576.