SEARCH

SEARCH BY CITATION

REFERENCES

  • Aït-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics 36 , 90637.
  • Aït-Sahalia, Y. and R. Kimmel (2007). Maximum likelihood estimation of stochastic volatility models. Journal of Financial Economics 83 , 41352.
  • Aït-Sahalia, Y. and R. Kimmel (2010). Estimating affine multifactor term structure models using closed-form likelihood expansions. Journal of Financial Economics 98 , 11344.
  • Andersen, T. G., L. Benzoni and J. Lund (2001). Towards an empirical foundation of continuous-time equity return models. Journal of Finance 57 , 123984.
  • Bakshi, G., C. Cao and Z. Chen (1997). Empirical performance of alternative option pricing models. Journal of Finance 52 , 200349.
  • Bates, D. S. (2000). Post-’87 crash fears in the S&P 500 futures option market. Journal of Econometrics 94 , 181238.
  • Bates, D. S. (2003). Empirical option pricing: a retrospection. Journal of Econometrics 116 , 387404.
  • Black, F. and M. Scholes (1973). The pricing of options and corporate liabilities. Journal of Political Economy 81 , 63759.
  • Brandt, M. W. and P. He (2005). Simulated likelihood estimation of affine term structure models from panel data. Working paper, Wharton School of Business, University of Pennsylvania.
  • Broadie, M., M. Chernov and M. Johannes (2007). Model specification and risk premia: evidence from futures options. Journal of Finance 62 , 145390.
  • Cheng, P. and O. Scaillet (2007). Linear quadratic jump-diffusion modeling. Mathematical Finance 17 , 57598.
  • Chernov, M., R. A. Gallant, E. Ghysels and G. Tauchen (2003). Alternative models of stock price dynamics. Journal of Econometrics 116 , 22557.
  • Christoffersen, P., K. Jacobs and K. Mimouni (2010). Volatility dynamics for the S&P500: evidence from realized volatility, daily returns and option prices. Review of Financial Studies 23 , 314189.
  • Conley, T. G., L. P. Hansen, E. G. Luttmer and J. A. Scheinkman (1997). Short-term interest rates as subordinated diffusions. Review of Financial Studies 10 , 52577.
  • De Jong, F. (2000). Time series and cross-section information in affine term-structure models. Journal of Business & Economic Statistics 18 , 30014.
  • Duffee, G. (2002). Term premia and interest rate forecasts in affine models. Journal of Finance 57 , 40543.
  • Durham, G. B. (2006). Monte Carlo methods for estimating, smoothing, and filtering one and two-factor stochastic volatility models. Journal of Econometrics 133 , 273305.
  • Durham, G. B. (2007). SV mixture models with application to S&P 500 index returns. Journal of Financial Economics 85 , 82256.
  • Durham, G. B. (2010). Risk-neutral modelling with affine and non-affine models. Working paper, Leeds School of Business, University of Colorado at Boulder.
  • Durham, G. B. and R. A. Gallant (2002). Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. Journal of Business & Economic Statistics 20 , 297316.
  • Gelman, A., J. Carlin, H. Stern and D. Rubin (1995). Bayesian Data Analysis. London : Chapman and Hall.
  • Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 24 , 133799.
  • Huber, P., O. Scaillet and M.-P. Victoria-Feser (2009). Assessing multivariate predictors of financial market movements: a latent factor framework for ordinal data. Annals of Applied Statistics 3 , 24971.
  • Jiang, G. and Y. Tian (2005). The model-free implied volatility and its information content. Review of Financial Studies 18 , 130542.
  • Jiang, G. and Y. Tian (2007). Extracting model-free volatility from option prices. Journal of Derivatives 14 , 3560.
  • Jones, C. S. (2003). The dynamics of stochastic volatility: evidence from underlying and options markets. Journal of Econometrics 116 , 181224.
  • Koopman, S. J., N. Shephard and D. Creal (2009). Testing the assumptions behind importance sampling. Journal of Econometrics 149 , 211.
  • Lee, R. W. (2001). Implied and local volatilities under stochastic volatility. International Journal of Theoretical and Applied Finance 4 , 4589.
  • Lewis, A.S. (2000). Option Valuation under Stochastic Volatility. Newport Beach, CA: Finance Press.
  • Medvedev, A. and O. Scaillet (2007). Approximation and calibration of short term implied volatilities under jump-diffusion stochastic volatility. Review of Financial Studies 20 , 42759.
  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics 3 , 12544.
  • Monahan, J. F. (1993). Testing the behavior of importance sampling weights. Computer Science and Statistics: Proceedings of the 25th Annual Symposium on the Interface, 11217.
  • Pan, J. (2002). The jump-risk premia implicit in options: evidence from an integrated time-series study. Journal of Financial Economics 63 , 350.
  • Pitt, M. K. (2002). Smooth particle filters for likelihood evaluation and maximization. Working paper, University of Warwick.
  • Rao, C. R. (1952). Advanced Statistical Methods in Biometric Research. New York : Wiley.
  • Rubin, D. B. (1988). Using the SIR algorithm to simulate posterior distributions. In J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith (Eds.), Bayesian Statistics, Volume 3, 395402. Oxford : Oxford University Press.
  • Sircar, K. R. and G. Papanicolau (1999). Stochastic volatility, smile and asymptotics. Applied Mathematical Finance 6 , 10745.
  • Tauchen, G. (2002). Comment on Durham and Gallant (2002). Journal of Business & Economic Statistics 20 , 33132.
  • Willard, G. A. (1997). Calculating prices and sensitivities for path-independent derivative securities in multifactor models. Journal of Derivatives 5 , 4561.