PRECLINICAL STUDY: Route of administration affects the ability of naltrexone to reduce amphetamine-potentiated brain stimulation reward in rats


Mark S. Todtenkopf, Department of Life Sciences & Toxicology, Alkermes, Inc., 88 Sidney Street, Cambridge, MA 02139-4137, USA. E-mail:


Opioid receptor antagonism has been shown to attenuate behavioral and neurochemical effects of amphetamine in humans and rodents. The effects of acute (oral or subcutaneous) or extended-release naltrexone (XR-NTX) were tested on the reward-enhancing effects of amphetamine using the intracranial self-stimulation (ICSS) paradigm. Acute exposure to drugs of abuse reduces the locus of rise (LOR) in the ICSS procedure, reflecting enhanced brain stimulation reward (BSR). Rats were treated once a day with naltrexone orally (PO; 5.0 mg/kg) or subcutaneously (SC; 0.5 mg/kg) for four consecutive days and tested with D-amphetamine (0.5 mg/kg, intraperitoneal) in the ICSS paradigm 30 minutes later on days 1 and 4. Separate groups of rats received XR-NTX (50 mg/kg, SC) or placebo microspheres (similar mass to XR-NTX, SC) on day 0 and tested with D-amphetamine in the ICSS paradigm on days 4, 14, 21, 28 and 41 after administration. Naltrexone plasma concentrations were determined for each amphetamine testing session using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). In rats pretreated with naltrexone acutely, amphetamine-potentiated BSR did not differ from vehicle-pretreated rats on either day 1 or day 4 (25–30% decrease in LOR). In XR-NTX-pretreated rats, amphetamine-potentiated BSR was reduced by 64 and 70% on days 4 and 14, respectively, compared to placebo microsphere-treated controls. This effect dissipated by day 21. Naltrexone plasma concentrations were comparable across all treatment groups (14–30 ng/ml) on days 1, 4 and 14. In summary, an extended-release formulation of naltrexone results in significant attenuation of psychostimulant-enhanced BSR that is not observed with acute naltrexone.