SEARCH

SEARCH BY CITATION

References

  • 1
    Coenraads PJ, Goncalo M. Skin diseases with high public health impact. Contact dermatitis. Eur J Dermatol 2007;17:564565.
  • 2
    Saint-Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D et al. Allergic contact dermatitis. Eur J Dermatol 2004;14:284295.
  • 3
    Asano Y, Makino T, Norisugi O, Shimizu T. Occupational cobalt induced systemic contact dermatitis. Eur J Dermatol 2008;19:166167.
  • 4
    Nicolas JF, Testud F, Vocanson M. Sensitisation versus tolerance in contact eczema. Ann Dermatol Venereol 2008;135:733736.
  • 5
    Belsito DV. The diagnostic evaluation, treatment, and prevention of allergic contact dermatitis in the new millennium. J Allergy Clin Immunol 2000;105:409420.
  • 6
    Blauvelt A, Hwang ST, Udey MC. 11. Allergic and immunologic diseases of the skin. J Allergy Clin Immunol 2003;111(2 Suppl.):S560S570.
  • 7
    Lepoittevin J, Leblond I. Hapten–peptide T cell receptor interactions: molecular basis for the recognition of haptens by T lymphocytes. Eur J Dermatol 1997;7:151154.
  • 8
    Divkovic M, Pease CK, Gerberick GF, Basketter DA. Hapten–protein binding: from theory to practical application in the in vitro prediction of skin sensitization. Contact Dermatitis 2005;53:189200.
  • 9
    Benezra C. Molecular aspects of allergic contact dermatitis. Acta Derm Venereol Suppl (Stockh) 1987;134:6263.
  • 10
    Karlberg AT, Bergstrom MA, Borje A, Luthman K, Nilsson JL. Allergic contact dermatitis – formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 2008;21:5369.
  • 11
    Zhang Y, Wilcox DE. Thermodynamic and spectroscopic study of Cu(II) and Ni(II) binding to bovine serum albumin. J Biol Inorg Chem 2002;7:327337.
  • 12
    Pichler WJ, Beeler A, Keller M, Lerch M, Posadas S, Schmid D et al. Pharmacological interaction of drugs with immune receptors: the p-i concept. Allergol Int 2006;55:1725.
  • 13
    Lepoittevin JP. Metabolism versus chemical transformation or pro- versus prehaptens? Contact Dermatitis 2006;54:7374.
  • 14
    Griem P, Wulferink M, Sachs B, Gonzalez JB, Gleichmann E. Allergic and autoimmune reactions to xenobiotics: how do they arise? Immunol Today 1998;19:133141.
  • 15
    Hagvall L, Backtorp C, Svensson S, Nyman G, Borje A, Karlberg AT. Fragrance compound geraniol forms contact allergens on air exposure. Identification and quantification of oxidation products and effect on skin sensitization. Chem Res Toxicol 2007;20:807814.
  • 16
    Matura M, Skold M, Borje A, Andersen KE, Bruze M, Frosch P et al. Selected oxidized fragrance terpenes are common contact allergens. Contact Dermatitis 2005;52:320328.
  • 17
    Skold M, Borje A, Harambasic E, Karlberg AT. Contact allergens formed on air exposure of linalool. Identification and quantification of primary and secondary oxidation products and the effect on skin sensitization. Chem Res Toxicol 2004;17:16971705.
  • 18
    Avenel-Audran M. Photoallergic dermatitis. Allergy Immunol (Paris) 1999;31:217220.
  • 19
    Merk HF, Baron JM, Neis MM, Obrigkeit DH, Karlberg AT. Skin: major target organ of allergic reactions to small molecular weight compounds. Toxicol Appl Pharmacol 2007;224:313317.
  • 20
    Martin SF, Dudda JC, Bachtanian E, Lembo A, Liller S, Durr C et al. Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med 2008;205:21512162.
  • 21
    Martin SF, Jakob T. From innate to adaptive immune responses in contact hypersensitivity. Curr Opin Allergy Clin Immunol 2008;8:289293.
  • 22
    Jakob T, Ring J, Udey MC. Multistep navigation of Langerhans/dendritic cells in and out of the skin. J Allergy Clin Immunol 2001;108:688696.
  • 23
    Furio L, Guezennec A, Ducarre B, Guesnet J, Peguet-Navarro J. Differential effects of allergens and irritants on early differentiating monocyte-derived dendritic cells. Eur J Dermatol 2008;18:141147.
  • 24
    Weltzien HU, Moulon C, Martin S, Padovan E, Hartmann U, Kohler J. T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 1996;107:141151.
  • 25
    Xu H, DiIulio NA, Fairchild RL. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (Il) 4/Il-10-producing (Th2) negative regulatory CD4+ T cells. J Exp Med 1996;183:10011012.
  • 26
    Saint-Mezard P, Krasteva M, Chavagnac C, Bosset S, Akiba H, Kehren J et al. Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Invest Dermatol 2003;120:641647.
  • 27
    Akiba H, Kehren J, Ducluzeau MT, Krasteva M, Horand F, Kaiserlian D et al. Skin inflammation during contact hypersensitivity is mediated by early recruitment of CD8+ T cytotoxic 1 cells inducing keratinocyte apoptosis. J Immunol 2002;168:30793087.
  • 28
    Kehren J, Desvignes C, Krasteva M, Ducluzeau MT, Assossou O, Horand F et al. Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity. J Exp Med 1999;189:779786.
  • 29
    Bour H, Peyron E, Gaucherand M, Garrigue JL, Desvignes C, Kaiserlian D et al. Major histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol 1995;25:30063010.
  • 30
    Kish DD, Gorbachev AV, Fairchild RL. CD8+ T cells produce IL-2, which is required for CD(4+)CD25+ T cell regulation of effector CD8+ T cell development for contact hypersensitivity responses. J Leukoc Biol 2005;78:725735.
  • 31
    Dubois B, Chapat L, Goubier A, Kaiserlian D. CD4+CD25+ T cells as key regulators of immune responses. Eur J Dermatol 2003;13:111116.
  • 32
    Saint-Mezard P, Berard F, Dubois B, Kaiserlian D, Nicolas JF. The role of CD4+ and CD8+ T cells in contact hypersensitivity and allergic contact dermatitis. Eur J Dermatol 2004;14:131138.
  • 33
    Buckley DA, Rycroft RJ, White IR, McFadden JP. Fragrance as an occupational allergen. Occup Med (Lond) 2002;52:1316.
  • 34
    Vocanson M, Hennino A, Cluzel-Tailhardat M, Saint-Mezard P, Benetiere J, Chavagnac C et al. CD8+ T cells are effector cells of contact dermatitis to common skin allergens in mice. J Invest Dermatol 2006;126:815820.
  • 35
    Zaba LC, Krueger JG, Lowes MA. Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol 2009;129:302308.
  • 36
    Kaplan DH, Kissenpfennig A, Clausen BE. Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol 2008;38:23692376.
  • 37
    Bonneville M, Chavagnac C, Vocanson M, Rozieres A, Benetiere J, Pernet I et al. Skin contact irritation conditions the development and severity of allergic contact dermatitis. J Invest Dermatol 2007;127:14301435.
  • 38
    Aiba S. Dendritic cells: importance in allergy. Allergol Int 2007;56:201208.
  • 39
    Kissenpfennig A, Malissen B. Langerhans cells – revisiting the paradigm using genetically engineered mice. Trends Immunol 2006;27:132139.
  • 40
    Villadangos JA, Heath WR. Life cycle, migration and antigen presenting functions of spleen and lymph node dendritic cells: limitations of the Langerhans cells paradigm. Semin Immunol 2005;17:262272.
  • 41
    Sabatte J, Maggini J, Nahmod K, Amaral MM, Martinez D, Salamone G et al. Interplay of pathogens, cytokines and other stress signals in the regulation of dendritic cell function. Cytokine Growth Factor Rev 2007;18:517.
  • 42
    Cumberbatch M, Dearman RJ, Griffiths CE, Kimber I. Epidermal Langerhans cell migration and sensitisation to chemical allergens. Apmis 2003;111:797804.
  • 43
    Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC, Van Rooijen N et al. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 2006;24:191201.
  • 44
    Villadangos JA. Hold on, the monocytes are coming! Immunity 2007;26:390392.
  • 45
    Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med 2007;204:31333146.
  • 46
    Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH et al. Identification of a novel population of Langerin+ dendritic cells. J Exp Med 2007;204:31473156.
  • 47
    Poulin LF, Henri S, De Bovis B, Devilard E, Kissenpfennig A, Malissen B. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 2007;204:31193131.
  • 48
    Wang L, Bursch LS, Kissenpfennig A, Malissen B, Jameson SC, Hogquist KA. Langerin expressing cells promote skin immune responses under defined conditions. J Immunol 2008;180:47224727.
  • 49
    Fukunaga A, Khaskhely NM, Sreevidya CS, Byrne SN, Ullrich SE. Dermal dendritic cells, and not Langerhans cells, play an essential role in inducing an immune response. J Immunol 2008;180:30573064.
  • 50
    McMinn PC, Halliday GM, Muller HK. Effects of gliotoxin on Langerhans’ cell function: contact hypersensitivity responses and skin graft survival. Immunology 1990;71:4651.
  • 51
    Lynch DH, Gurish MF, Daynes RA. Relationship between epidermal Langerhans cell density ATPase activity and the induction of contact hypersensitivity. J Immunol 1981;126:18921897.
  • 52
    Ptak W, Rozycka D, Askenase PW, Gershon RK. Role of antigen-presenting cells in the development and persistence of contact hypersensitivity. J Exp Med 1980;151:362375.
  • 53
    Tamaki K, Fujiwara H, Levy RB, Shearer GM, Katz SI. Hapten specific TNP-reactive cytotoxic effector cells using epidermal cells as targets. J Invest Dermatol 1981;77:225229.
  • 54
    Girolomoni G, Lutz MB, Pastore S, Assmann CU, Cavani A, Ricciardi-Castagnoli P. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin. Eur J Immunol 1995;25:21632169.
  • 55
    Grabbe S, Steinbrink K, Steinert M, Luger TA, Schwarz T. Removal of the majority of epidermal Langerhans cells by topical or systemic steroid application enhances the effector phase of murine contact hypersensitivity. J Immunol 1995;155:42074217.
  • 56
    Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 2005;22:643654.
  • 57
    Bennett CL, Van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 2005;169:569576.
  • 58
    Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 2005;23:611620.
  • 59
    Allan RS, Waithman J, Bedoui S, Jones CM, Villadangos JA, Zhan Y et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 2006;25:153162.
  • 60
    Martin S, Ortmann B, Pflugfelder U, Birsner U, Weltzien HU. Role of hapten-anchoring peptides in defining hapten–epitopes for MHC-restricted cytotoxic T cells. Cross-reactive TNP-determinants on different peptides. J Immunol 1992;149:25692575.
  • 61
    Von Bonin A, Ortmann B, Martin S, Weltzien HU. Peptide-conjugated hapten groups are the major antigenic determinants for trinitrophenyl-specific cytotoxic T cells. Int Immunol 1992;4:869874.
  • 62
    Kohler J, Hartmann U, Grimm R, Pflugfelder U, Weltzien HU. Carrier-independent hapten recognition and promiscuous MHC restriction by CD4 T cells induced by trinitrophenylated peptides. J Immunol 1997;158:591597.
  • 63
    Cavani A, Hackett CJ, Wilson KJ, Rothbard JB, Katz SI. Characterization of epitopes recognized by hapten-specific CD4+ T cells. J Immunol 1995;154:12321238.
  • 64
    Martin S, Von Bonin A, Fessler C, Pflugfelder U, Weltzien HU. Structural complexity of antigenic determinants for class I MHC-restricted, hapten-specific T cells. Two qualitatively differing types of H-2Kb-restricted TNP epitopes. J Immunol 1993;151:678687.
  • 65
    Martin S, Lappin MB, Kohler J, Delattre V, Leicht C, Preckel T et al. Peptide immunization indicates that CD8+ T cells are the dominant effector cells in trinitrophenyl-specific contact hypersensitivity. J Invest Dermatol 2000;115:260266.
  • 66
    Gamerdinger K, Moulon C, Karp DR, Van Bergen J, Koning F, Wild D et al. A new type of metal recognition by human T cells: contact residues for peptide-independent bridging of T cell receptor and major histocompatibility complex by nickel. J Exp Med 2003;197:13451353.
  • 67
    Wulferink M, Dierkes S, Gleichmann E. Cross-sensitization to haptens: formation of common haptenic metabolites, T cell recognition of cryptic peptides, and true T cell cross-reactivity. Eur J Immunol 2002;32:13381348.
  • 68
    Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515548.
  • 69
    Reiser H, Schneeberger EE. Expression and function of B7-1 and B7-2 in hapten-induced contact sensitivity. Eur J Immunol 1996;26:880885.
  • 70
    Symington FW, Brady W, Linsley PS. Expression and function of B7 on human epidermal Langerhans cells. J Immunol 1993;150:12861295.
  • 71
    Kondo S, Kooshesh F, Wang B, Fujisawa H, Sauder DN. Contribution of the CD28 molecule to allergic and irritant-induced skin reactions in CD28−/− mice. J Immunol 1996;157:48224829.
  • 72
    Xu H, Banerjee A, Dilulio NA, Fairchild RL. Development of effector CD8+ T cells in contact hypersensitivity occurs independently of CD4+ T cells. J Immunol 1997;158:47214728.
  • 73
    Chen AI, McAdam AJ, Buhlmann JE, Scott S, Lupher ML Jr, Greenfield EA et al. Ox40-ligand has a critical costimulatory role in dendritic cell: T cell interactions. Immunity 1999;11:689698.
  • 74
    Kim HK, Guan H, Zu G, Li H, Wu L, Feng X et al. High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals. J Leukoc Biol 2006;79:686695.
  • 75
    Mahnke K, Ring S, Johnson TS, Schallenberg S, Schonfeld K, Storn V et al. Induction of immunosuppressive functions of dendritic cells in vivo by CD4+CD25+ regulatory T cells: role of B7-H3 expression and antigen presentation. Eur J Immunol 2007;37:21172126.
  • 76
    Tsushima F, Iwai H, Otsuki N, Abe M, Hirose S, Yamazaki T et al. Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses. Eur J Immunol 2003;33:27732782.
  • 77
    Li L, Sad S, Kagi D, Mosmann TR. CD8Tc1 and Tc2 cells secrete distinct cytokine patterns in vitro and in vivo but induce similar inflammatory reactions. J Immunol 1997;158:41524161.
  • 78
    Traidl-Hoffmann C, Mariani V, Hochrein H, Karg K, Wagner H, Ring J et al. Pollen-associated phytoprostanes inhibit dendritic cell interleukin-12 production and augment T helper type 2 cell polarization. J Exp Med 2005;201:627636.
  • 79
    Wang YH, Liu YJ. OX40-OX40L interactions: a promising therapeutic target for allergic diseases? J Clin Invest 2007;117:36553657.
  • 80
    Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 2007;27:610624.
  • 81
    Martin S, Delattre V, Leicht C, Weltzien HU, Simon JC. A high frequency of allergen-specific CD8+ Tc1 cells is associated with the murine immune response to the contact sensitizer trinitrophenyl. Exp Dermatol 2003;12:7885.
  • 82
    Van Och FM, Van Loveren H, De Jong WH, Vandebriel RJ. Cytokine production induced by low-molecular-weight chemicals as a function of the stimulation index in a modified local lymph node assay: an approach to discriminate contact sensitizers from respiratory sensitizers. Toxicol Appl Pharmacol 2002;184:4656.
  • 83
    Larsen JM, Bonefeld CM, Poulsen SS, Geisler C, Skov L. IL-23 and T(H)17-mediated inflammation in human allergic contact dermatitis. J Allergy Clin Immunol 2008;123:486492.
  • 84
    He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. CD8+ IL-17-producing T cells are important in effector functions for the elicitation of contact hypersensitivity responses. J Immunol 2006;177:68526858.
  • 85
    Gorbachev AV, DiIulio NA, Fairchild RL. IL-12 augments CD8+ T cell development for contact hypersensitivity responses and circumvents anti-CD154 antibody-mediated inhibition. J Immunol 2001;167:156162.
  • 86
    Riemann H, Loser K, Beissert S, Fujita M, Schwarz A, Schwarz T et al. IL-12 breaks dinitrothiocyanobenzene (DNTB)-mediated tolerance and converts the tolerogen DNTB into an immunogen. J Immunol 2005;175:58665874.
  • 87
    Gocinski BL, Tigelaar RE. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J Immunol 1990;144:41214128.
  • 88
    Bouloc A, Cavani A, Katz SI. Contact hypersensitivity in MHC class II-deficient mice depends on CD8 T lymphocytes primed by immunostimulating Langerhans cells. J Invest Dermatol 1998;111:4449.
  • 89
    Kolesaric A, Stingl G, Elbe-Burger A. MHC class I+/II- dendritic cells induce hapten-specific immune responses in vitro and in vivo. J Invest Dermatol 1997;109:580585.
  • 90
    Krasteva M, Kehren J, Horand F, Akiba H, Choquet G, Ducluzeau MT et al. Dual role of dendritic cells in the induction and down-regulation of antigen-specific cutaneous inflammation. J Immunol 1998;160:11811190.
  • 91
    Matzinger P. The danger model: a renewed sense of self. Science 2002;296:301305.
  • 92
    Krasteva M, Kehren J, Ducluzeau MT, Sayag M, Cacciapuoti M, Akiba H et al. Contact dermatitis I. Pathophysiology of contact sensitivity. Eur J Dermatol 1999;9:6577.
  • 93
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401:708712.
  • 94
    Walzer T, Marcais A, Saltel F, Bella C, Jurdic P, Marvel J. Cutting edge: immediate RANTES secretion by resting memory CD8 T cells following antigenic stimulation. J Immunol 2003;170:16151619.
  • 95
    Santamaria-Babi LF. CLA(+) T cells in cutaneous diseases. Eur J Dermatol 2004;14:1318.
  • 96
    Dudda JC, Simon JC, Martin S. Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 2004;172:857863.
  • 97
    Mora JR, Von Andrian UH. T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 2006;27:235243.
  • 98
    Berg EL, Yoshino T, Rott LS, Robinson MK, Warnock RA, Kishimoto TK et al. The cutaneous lymphocyte antigen is a skin lymphocyte homing receptor for the vascular lectin endothelial cell-leukocyte adhesion molecule 1. J Exp Med 1991;174:14611466.
  • 99
    Campbell JJ, Haraldsen G, Pan J, Rottman J, Qin S, Ponath P et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 1999;400:776780.
  • 100
    Erdmann I, Scheidegger EP, Koch FK, Heinzerling L, Odermatt B, Burg G et al. Fucosyltransferase VII-deficient mice with defective E-, P-, and L-selectin ligands show impaired CD4+ and CD8+ T cell migration into the skin, but normal extravasation into visceral organs. J Immunol 2002;168:21392146.
  • 101
    Reiss Y, Proudfoot AE, Power CA, Campbell JJ, Butcher EC. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med 2001;194:15411547.
  • 102
    Santamaria LF, Perez Soler MT, Hauser C, Blaser K. Allergen specificity and endothelial transmigration of T cells in allergic contact dermatitis and atopic dermatitis are associated with the cutaneous lymphocyte antigen. Int Arch Allergy Immunol 1995;107:359362.
  • 103
    Morales J, Homey B, Vicari AP, Hudak S, Oldham E, Hedrick J et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci USA 1999;96:1447014475.
  • 104
    Kerfoot SM, Szczepanik M, Tung JW, Askenase PW. Identification of initiator B cells, a novel subset of activation-induced deaminase-dependent B-1-like cells that mediate initiation of contact sensitivity. J Immunol 2008;181:17171727.
  • 105
    Campos RA, Szczepanik M, Lisbonne M, Itakura A, Leite-de-Moraes M, Askenase PW. Invariant NKT cells rapidly activated via immunization with diverse contact antigens collaborate in vitro with B-1 cells to initiate contact sensitivity. J Immunol 2006;177:36863694.
  • 106
    Campos RA, Szczepanik M, Itakura A, Lisbonne M, Dey N, Leite-de-Moraes MC et al. Interleukin-4-dependent innate collaboration between iNKT cells and B-1 B cells controls adaptative contact sensitivity. Immunology 2006;117:536547.
  • 107
    Tsuji RF, Szczepanik M, Kawikova I, Paliwal V, Campos RA, Itakura A et al. B cell-dependent T cell responses: IgM antibodies are required to elicit contact sensitivity. J Exp Med 2002;196:12771290.
  • 108
    Askenase PW, Bursztajn S, Gershon MD, Gershon RK. T cell-dependent mast cell degranulation and release of serotonin in murine delayed-type hypersensitivity. J Exp Med 1980;152:13581374.
  • 109
    Tamagawa-Mineoka R, Katoh N, Ueda E, Takenaka H, Kita M, Kishimoto S. The role of platelets in leukocyte recruitment in chronic contact hypersensitivity induced by repeated elicitation. Am J Pathol 2007;170:20192029.
  • 110
    Tsuji RF, Kawikova I, Ramabhadran R, Akahira-Azuma M, Taub D, Hugli TE et al. Early local generation of C5a initiates the elicitation of contact sensitivity by leading to early T cell recruitment. J Immunol 2000;165: 15881598.
  • 111
    Albanesi C, Scarponi C, Sebastiani S, Cavani A, Federici M, Sozzani S et al. A cytokine-to-chemokine axis between T lymphocytes and keratinocytes can favor Th1 cell accumulation in chronic inflammatory skin diseases. J Leukoc Biol 2001;70:617623.
  • 112
    Homey B, Steinhoff M, Ruzicka T, Leung DY. Cytokines and chemokines orchestrate atopic skin inflammation. J Allergy Clin Immunol 2006;118: 178189.
  • 113
    Suzuki K, Okuno T, Yamamoto M, Pasterkamp RJ, Takegahara N, Takamatsu H et al. Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha 1 beta 1 integrin. Nature 2007;446:680684.
  • 114
    Engeman T, Gorbachev AV, Kish DD, Fairchild RL. The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol 2004;76:941949.
  • 115
    Cattani F, Gallese A, Mosca M, Buanne P, Biordi L, Francavilla S et al. The role of CXCR2 activity in the contact hypersensitivity response in mice. Eur Cytokine Netw 2006;17:4248.
  • 116
    Biedermann T, Kneilling M, Mailhammer R, Maier K, Sander CA, Kollias G et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med 2000;192:14411452.
  • 117
    Biedermann T, Mailhammer R, Mai A, Sander C, Ogilvie A, Brombacher F et al. Reversal of established delayed type hypersensitivity reactions following therapy with IL-4 or antigen-specific Th2 cells. Eur J Immunol 2001;31:15821591.
  • 118
    Cher DJ, Mosmann TR. Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol 1987;138:36883694.
  • 119
    Gawkrodger DJ, Lloyd MH, Hunter JA. Occupational skin disease in hospital cleaning and kitchen workers. Contact Dermatitis 1986;15:132135.
  • 120
    Herrick CA, Das J, Xu L, Wisnewski AV, Redlich CA, Bottomly K. Differential roles for CD4 and CD8 T cells after diisocyanate sensitization: genetic control of TH2-induced lung inflammation. J Allergy Clin Immunol 2003;111:10871094.
  • 121
    Lopez CB, Kalergis AM, Becker MI, Garbarino JA, De Ioannes AE. CD8+ T cells are the effectors of the contact dermatitis induced by urushiol in mice and are regulated by CD4+ T cells. Int Arch Allergy Immunol 1998;117:194201.
  • 122
    Cavani A, Albanesi C, Traidl C, Sebastiani S, Girolomoni G. Effector and regulatory T cells in allergic contact dermatitis. Trends Immunol 2001;22:118120.
  • 123
    Martin SF, Dudda JC, Delattre V, Bachtanian E, Leicht C, Burger B et al. Fas-mediated inhibition of CD4+ T cell priming results in dominance of type 1 CD8+ T cells in the immune response to the contact sensitizer trinitrophenyl. J Immunol 2004;173: 31783185.
  • 124
    Albanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 1999;162:494502.
  • 125
    Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Th1 and Th2 lymphocytes, and modulates interferon-gamma- and interleukin-4-induced activation of human keratinocytes. J Invest Dermatol 2000;115:8187.
  • 126
    Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 2002;17:375387.
  • 127
    Wakabayashi T, Hu DL, Tagawa Y, Sekikawa K, Iwakura Y, Hanada K et al. IFN-gamma and TNF-alpha are involved in urushiol-induced contact hypersensitivity in mice. Immunol Cell Biol 2005;83:1824.
    Direct Link:
  • 128
    Traidl C, Sebastiani S, Albanesi C, Merk HF, Puddu P, Girolomoni G et al. Disparate cytotoxic activity of nickel-specific CD8+ and CD4+ T cell subsets against keratinocytes. J Immunol 2000;165:30583064.
  • 129
    Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Brocker EB, Blaser K et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol 2001;108:839846.
  • 130
    Kalish RS, Wood JA, LaPorte A. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro. J Clin Invest 1994;93:20392047.
  • 131
    Takeshita K, Yamasaki T, Akira S, Gantner F, Bacon KB. Essential role of MHC II-independent CD4+ T cells, IL-4 and STAT6 in contact hypersensitivity induced by fluorescein isothiocyanate in the mouse. Int Immunol 2004;16:685695.
  • 132
    Yokozeki H, Watanabe K, Igawa K, Miyazaki Y, Katayama I, Nishioka K. Gammadelta T cells assist alphabeta T cells in the adoptive transfer of contact hypersensitivity to para-phenylenediamine. Clin Exp Immunol 2001;125:351359.
  • 133
    O’Leary JG, Goodarzi M, Drayton DL, Von Andrian UH. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat Immunol 2006;7:507516.
  • 134
    Gainers ME, Descheny L, Barthel SR, Liu L, Wurbel MA, Dimitroff CJ. Skin-homing receptors on effector leukocytes are differentially sensitive to glyco-metabolic antagonism in allergic contact dermatitis. J Immunol 2007;179:85098518.
  • 135
    Yang J, Huck SP, McHugh RS, Hermans IF, Ronchese F. Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8+ T cells in vivo. Proc Natl Acad Sci USA 2006;103:147152.
  • 136
    Lebbink RJ, Meyaard L. Non-MHC ligands for inhibitory immune receptors: novel insights and implications for immune regulation. Mol Immunol 2007;44:21532164.
  • 137
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677704.
  • 138
    Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 2006;12:13721379.
  • 139
    Cavani A, De Pita O, Girolomoni G. New aspects of the molecular basis of contact allergy. Curr Opin Allergy Clin Immunol 2007;7:404408.
  • 140
    Meng X, Sawamura D, Tamai K, Hanada K, Ishida H, Hashimoto I. Keratinocyte gene therapy for systemic diseases. J Clin Invest 1998;101:14621467.
  • 141
    Enk AH, Katz SI. Contact sensitivity as a model for T-cell activation in skin. J Invest Dermatol 1995;105(1 Suppl.):80S83S.
  • 142
    O’Garra A, Vieira P. Regulatory T cells and mechanisms of immune system control. Nat Med 2004;10:801805.
  • 143
    Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 2007;8:10951104.
  • 144
    Cavani A, Ottaviani C, Nasorri F, Sebastiani S, Girolomoni G. Immunoregulation of hapten and drug induced immune reactions. Curr Opin Allergy Clin Immunol 2003;3:243247.
  • 145
    Melrose J, Tsurushita N, Liu G, Berg EL. IFN-gamma inhibits activation-induced expression of E- and P-selectin on endothelial cells. J Immunol 1998;161:24572464.
  • 146
    Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006;25:195201.
  • 147
    Gorbachev AV, Fairchild RL. Induction and regulation of T-cell priming for contact hypersensitivity. Crit Rev Immunol 2001;21:451472.
  • 148
    Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006;212:827.
  • 149
    Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, Von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005;6:12191227.
  • 150
    Dubois B, Chapat L, Goubier A, Papiernik M, Nicolas JF, Kaiserlian D. Innate CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T cells mediating skin inflammation. Blood 2003;102:32953301.
  • 151
    Ruckert R, Brandt K, Hofmann U, Bulfone-Paus S, Paus R. IL-2-IgG2b fusion protein suppresses murine contact hypersensitivity in vivo. J Invest Dermatol 2002;119:370376.
  • 152
    Ring S, Schafer SC, Mahnke K, Lehr HA, Enk AH. CD4+ CD25+ regulatory T cells suppress contact hypersensitivity reactions by blocking influx of effector T cells into inflamed tissue. Eur J Immunol 2006;36:29812992.
  • 153
    Maeda A, Beissert S, Schwarz T, Schwarz A. Phenotypic and functional characterization of ultraviolet radiation-induced regulatory T cells. J Immunol 2008;180:30653071.
  • 154
    Cavani A, Nasorri F, Ottaviani C, Sebastiani S, De Pita O, Girolomoni G. Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol 2003;171:57605768.
  • 155
    O’Garra A, Vieira P. T(H)1 cells control themselves by producing interleukin-10. Nat Rev Immunol 2007;7:425428.
  • 156
    Maurer M, Seidel-Guyenot W, Metz M, Knop J, Steinbrink K. Critical role of IL-10 in the induction of low zone tolerance to contact allergens. J Clin Invest 2003;112:432439.
  • 157
    Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008;28:639650.
  • 158
    Girardi M, Lewis J, Glusac E, Filler RB, Geng L, Hayday AC et al. Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med 2002;195:855867.
  • 159
    Vocanson M, Hennino A, Chavagnac C, Rozieres A, Saint-Mezard P, Akiba H et al. Allergic contact dermatitis: how to re-induce tolerance? Med Sci (Paris) 2006;22:158163.