SEARCH

SEARCH BY CITATION

References

  • 1
    Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368:733743.
  • 2
    Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL et al. Interleukin-13: central mediator of allergic asthma. Science 1998;282:22582261.
  • 3
    Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 1998;282:22612263.
  • 4
    Gereda JE, Leung DY, Thatayatikom A, Streib JE, Price MR, Klinnert MD et al. Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma. Lancet 2000;355:16801683.
  • 5
    Akbari O, Freeman GJ, Meyer EH, Greenfield EA, Chang TT, Sharpe AH et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 2002;8:10241032.
  • 6
    Michel O. Role of lipopolysaccharide (LPS) in asthma and other pulmonary conditions. J Endotoxin Res 2003;9:293300.
  • 7
    Kim YK, Oh SY, Jeon SG, Park HW, Lee SY, Chun EY et al. Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J Immunol 2007;178:53755382.
  • 8
    Kim YS, Hong SW, Choi JP, Shin TS, Moon HG, Choi EJ et al. Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways. J Immunol 2009;183:51135120.
  • 9
    Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009;9:581593.
  • 10
    Choi DS, Lee JM, Park GW, Lim HW, Bang JY, Kim YK et al. Proteomic analysis of microvesicles derived from human colorectal cancer cells. J Proteome Res 2007;6:46464655.
  • 11
    Prado N, Marazuela EG, Segura E, Fernandez-Garcia H, Villalba M, Thery C et al. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 2008;181:15191525.
  • 12
    Jeon SG, Lee CG, Oh MH, Chun EY, Gho YS, Cho SH et al. Recombinant basic fibroblast growth factor inhibits the airway hyperresponsiveness, mucus production, and lung inflammation induced by an allergen challenge. J Allergy Clin Immunol 2007;119:831837.
  • 13
    Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 1999;94:37913799.
  • 14
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008;10:619624.
  • 15
    Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes released by human neutrophils are specialized functional units. J Immunol 1999;163:45644573.
  • 16
    Obregon C, Rothen-Rutishauser B, Gitahi SK, Gehr P, Nicod LP. Exovesicles from human activated dendritic cells fuse with resting dendritic cells, allowing them to present alloantigens. Am J Pathol 2006;169:21272136.
  • 17
    Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983;97:329339.
  • 18
    Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2000;19:33653374.
  • 19
    Denzer K, Van Eijk M, Kleijmeer MJ, Jakobson E, De Groot C, Geuze HJ. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 2000;165:12591265.
  • 20
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol 2005;17:879887.
  • 21
    Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 2004;101:1336813373.
  • 22
    Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 2003;22:578583.
  • 23
    Segura E, Guerin C, Hogg N, Amigorena S, Thery C. CD8+  dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J Immunol 2007;179:14891496.
  • 24
    Taylor DD, Gercel-Taylor C. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br J Cancer 2005;92:305311.
  • 25
    Colino J, Snapper CM. Exosomes from bone marrow dendritic cells pulsed with diphtheria toxoid preferentially induce type 1 antigen-specific IgG responses in naive recipients in the absence of free antigen. J Immunol 2006;177:37573762.
  • 26
    Segura E, Nicco C, Lombard B, Veron P, Raposo G, Batteux F et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 2005;106:216223.
  • 27
    Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 2002;168:32353241.