SEARCH

SEARCH BY CITATION

References

  • 1
    Lee G, Walser TC, Dubinett SM. Chronic inflammation, chronic obstructive pulmonary disease, and lung cancer. Curr Opin Pulm Med 2009;15:303307.
  • 2
    Rinia AB, Kostamo K, Ebbens FA, van Drunen CM, Fokkens WJ. Nasal polyposis: a cellular-based approach to answering questions. Allergy 2007;62:348358.
  • 3
    Wenzel SE. Arachidonic acid metabolites: mediators of inflammation in asthma. Pharmacotherapy 1997;17:3S12S.
  • 4
    Holecek V, Slipka J, Sobotova S, Slouka D, Rokyta R. [Free radicals and antioxidants in otorhinolaryngology]. Cesk Fysiol 2008;57:116122.
  • 5
    Cekin E, Ipcioglu OM, Erkul BE, Kapucu B, Ozcan O, Cincik H et al. The association of oxidative stress and nasal polyposis. J Int Med Res 2009;37:325330.
  • 6
    Okur E, Inanc F, Yildirim I, Kilinc M, Kilic MA. Malondialdehyde level and adenosine deaminase activity in nasal polyps. Otolaryngol Head Neck Surg 2006;134:3740.
  • 7
    Bachert C, Hormann K, Mosges R, Rasp G, Riechelmann H, Muller R et al. An update on the diagnosis and treatment of sinusitis and nasal polyposis. Allergy 2003;58:176191.
  • 8
    Yeh TH, Lee SY, Hsu WC. Expression of SPLUNC1 protein in nasal polyp epithelial cells in air-liquid interface culture treated with IL-13. Am J Rhinol Allergy 2010;24:1720.
  • 9
    Lee HS, Myers A, Kim J. Vascular endothelial growth factor drives autocrine epithelial cell proliferation and survival in chronic rhinosinusitis with nasal polyposis. Am J Respir Crit Care Med 2009;180:10561067.
  • 10
    Go K, Ishino T, Nakashimo Y, Miyahara N, Ookubo T, Takeno S et al. Analysis of syndecan-1 and TGF-beta expression in the nasal mucosa and nasal polyps. Auris Nasus Larynx 2010;37:427435.
  • 11
    Olejniczak I, Kobos J, Gryczynski M, Durko M, Pietruszewska W. [Expression of adhesion molecule ICAM-1 in patients with nasal polyps]. Otolaryngol Pol 2007;61:607611.
  • 12
    Coste A, Brugel L, Maitre B, Boussat S, Papon JF, Wingerstmann L et al. Inflammatory cells as well as epithelial cells in nasal polyps express vascular endothelial growth factor. Eur Respir J 2000;15:367372.
  • 13
    Papon JF, Coste A, Gendron MC, Cordonnier C, Wingerstmann L, Peynegre R et al. HLA-DR and ICAM-1 expression and modulation in epithelial cells from nasal polyps. Laryngoscope 2002;112:20672075.
  • 14
    Pruliere-Escabasse V, Fanen P, Dazy AC, Lechapt-Zalcman E, Rideau D, Edelman A et al. TGF-beta 1 downregulates CFTR expression and function in nasal polyps of non-CF patients. Am J Physiol Lung Cell Mol Physiol 2005;288:L77L83.
  • 15
    Cheng YK, Hwang GY, Lin CD, Tsai MH, Tsai SW, Chang WC. Altered expression profile of superoxide dismutase isoforms in nasal polyps from nonallergic patients. Laryngoscope 2006;116:417422.
  • 16
    Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003;4:181191.
  • 17
    Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 1999;13:12111233.
  • 18
    Ma Y, Hendershot LM. ER chaperone functions during normal and stress conditions. J Chem Neuroanat 2004;28:5165.
  • 19
    Liu Y, Laszlo C, Liu W, Chen X, Evans SC, Wu S. Regulation of G(1) arrest and apoptosis in hypoxia by PERK and GCN2-mediated eIF2alpha phosphorylation. Neoplasia 2010;12:6168.
  • 20
    Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002;16:452466.
  • 21
    Ma Y, Hendershot LM. Herp is dually regulated by both the endoplasmic reticulum stress-specific branch of the unfolded protein response and a branch that is shared with other cellular stress pathways. J Biol Chem 2004;279:1379213799.
  • 22
    Zhang K. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. Int J Clin Exp Med 2010;3:3340.
  • 23
    Kerbiriou M, Le Drevo MA, Ferec C, Trouve P. Coupling cystic fibrosis to endoplasmic reticulum stress: differential role of Grp78 and ATF6. Biochim Biophys Acta 2007;1772:12361249.
  • 24
    Yedjou CG, Tchounwou CK, Haile S, Edwards F, Tchounwou PB. N-acetyl-cysteine protects against DNA damage associated with lead toxicity in HepG2 cells. Ethn Dis 2010;20:S1-101–103.
  • 25
    Biswas SK, Rahman I. Environmental toxicity, redox signaling and lung inflammation: the role of glutathione. Mol Aspects Med 2009;30:6076.
  • 26
    Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J et al. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res 2011;21:817834.
  • 27
    Trnka J, Blaikie FH, Logan A, Smith RA, Murphy MP. Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res 2009;43:412.
  • 28
    Bensalem N, Ventura AP, Vallee B, Lipecka J, Tondelier D, Davezac N et al. Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients. Mol Cell Proteomics 2005;4:15911601.
  • 29
    Frand AR, Kaiser CA. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 1999;4:469477.
  • 30
    Kelly M, Trudel S, Brouillard F, Bouillaud F, Colas J, Nguyen-Khoa T et al. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J Pharmacol Exp Ther 2010;333:6069.
  • 31
    Gargalovic PS, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A et al. The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 2006;26:24902496.
  • 32
    Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY et al. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 2001;107:12631273.
  • 33
    Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 2004;24:1070310717.
  • 34
    Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011;3:pii: a004184.
  • 35
    Araki E, Oyadomari S, Mori M. Endoplasmic reticulum stress and diabetes mellitus. Intern Med 2003;42:714.
  • 36
    Chen W, Shang WH, Adachi Y, Hirose K, Ferrari DM, Kamata T. A possible biochemical link between NADPH oxidase (Nox) 1 redox-signalling and ERp72. Biochem J 2008;416:5563.
  • 37
    Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS, Lane KB et al. Endoplasmic reticulum stress in alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 2008;294:L1119L1126.
  • 38
    Kaser A, Lee AH, Franke A, Glickman JN, Zeissig S, Tilg H et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008;134:743756.
  • 39
    Kelsen SG, Duan X, Ji R, Perez O, Liu C, Merali S. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach. Am J Respir Cell Mol Biol 2008;38:541550.
  • 40
    Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer 2008;8:229.