• animal model;
  • complex trait;
  • integrated approach;
  • neuropathic pain;
  • pain genes

Chronic pain is a major healthcare problem affecting the daily lives of millions with enormous financial costs. The notorious variability and lack of efficient pain relief pharmaceuticals provide both genetic and therapeutic challenge. There are several genetic approaches that aim to uncover the molecular nature of pain phenotypes into their genetic components. Gene mapping using model organisms for various pain phenotypes has led to the identification of novel genes affecting susceptibility and response to pain stimuli. Translational studies have succeeded to tie those genes to human pain syndromes, thus suggesting new targets for drug discovery. In this short review, a perspective on pain genetics and the trajectory from pain phenotype to pain gene involving fine-mapping strategies, bioinformatic analysis and microarray profiling alongside human association analysis will be introduced. This integrated approach has led to identification of CACNG2 as a novel neuropathic pain gene affecting pain susceptibility both in mice and humans. It also serves as a prototype for efficient and economic discovery of pain genes. Comparisons to other methods as well as future directions of pain genetics will be discussed as well.