SEARCH

SEARCH BY CITATION

Keywords:

  • differentiation;
  • intact cell MALDI-TOF-MS;
  • mutans streptococci;
  • phenotyping

It is difficult to distinguish mutans streptococci on the species level, and even more so on the subspecies level. Intact cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) (ICM) was applied to reference strains of five of the species of the mutans group (Streptococcus criceti, Streptococcus downei, Streptococcus mutans, Streptococcus ratti, Streptococcus sobrinus), nonmutans streptococci (Streptococcus oralis, Streptococcus mitis, Streptococcus salivarius, and Streptococcus sanguinis), and 177 mutans streptococci isolated from saliva of 10 children. From the analysis of the reference strains, readily distinguishable ICM mass spectra were obtained for the different species. Based on multivariate statistical analysis, a correct and unambiguous assignment was made of the spectra of 159 isolated mutans streptococci to S. mutans and 16 isolates to S. sobrinus. Two isolates were sorted out and were identified by sequencing of their 16S rRNA genes as Streptococcus anginosus. In addition, ICM indicated a misclassification for some reference strains (AHT, V 100 and E 49) and re-classified AHT and E 49 as S. ratti and V 100 as S. sobrinus. This was confirmed by 16S rDNA sequencing. Based on a statistical similarity analysis of the spectra of reference strains and a quantitative assessment of the reproducibility of ICM, the isolates identified as either S. mutans or S. sobrinus were phenotyped on the subspecies level. In the population of the clinical isolates, 14 unambiguously different S. mutans and three different S. sobrinus phenotypes were detected. ICM proved to be a powerful tool for a differentiation of mutans streptococci down to the subspecies level.