Evidence for Three Different Systems of Movement of Indoleacetic Acid in Intact Roots of Phaseolus coccineus



Indoleacetic acid (IAA)-5-3H (2 × 10−9M) was applied to intact roots of Phaseolus coccineus seedlings, at the apex or 2 cm above the apex, at various pHs and in the presence of Cu2+ and NaCl. The transport of label in the roots was then examined after 6 h by cutting the roots into 1 mm sections above and below the zone of treatment. Basipetal movement from 2 cm above the apex was unafected by pH, Cu2+ or NaCl. Acropetal movement from the same area decreased with increasing pH from 5.4 to 8.0, probably due to an effect of pH on the entry of IAA into the cells. pH had no effect on sucrose transport. Cu2+ also inhibited acropetal movement but NaCl had no effect. Basipetal movement of label from the apex was reduced by Cu2+ and increasing pH, but not as much as with acropetal movement, and increased by the presence of NaCl. These facts are interpreted as showing 3 different systems of IAA movement in intact roots: basipetal from 2 cm up the root in some extracellular physical system; acropetal from 2 cm up the root, and basipetal from the apex, in a metabolically dependent intracellular system, but in different tissues of the root. It is proposed that endogenous IAA not only moves into the root from the stem but is also synthesized in the root apex, and moves basipetally for a short distance to the root growing zone in a separate system from the IAA descending from the stem.