Seedlings of Norway spruce (Picea abies L.) have been found to synthesize anthocyanins in the root tips as well as in the hypocotyls upon irradiation with white light when kept at 4°C for 6–8 days. In addition, it has also been found that the elongation and the geotropic curvature of spruce roots are dependent on the light conditions.

The course of the geotropic curvature in spruce roots containing anthocyanins has been followed during a period of 5 h, in which the seedlings were geotropically stimulated continuously in the horizontal position. When the stimulation was performed in white light and in darkness at 21°C, significantly larger curvatures were observed in the roots pretreated at 4°C in darkness than in the roots containing anthocyanins. The specific curvature (curvature in degrees per mm elongation), however, was approximately the same in both types of roots stimulated in white light. This was due to a retarded elongation of the roots pretreated with light at 4°C and containing anthocyanins. A smaller difference in elongation rate between roots with and without anthocyanins was observed in the dark than in the light, but even in the dark the anthocyanin-containing roots grew more slowly than roots without anthocyanins.

In order to find out if it is the anthocyanin content or the illumination which affects the elongation and geotropic curvature in the roots, a series of similar experiments was performed using cress seedlings grown at 4°C in light or darkness. Roots of cress seedlings cultivated under conditions which would induce anthocyanin formation in spruce roots exhibited the highest geotropic responses both in light and darkness as compared to cress seedlings grown at 4°C in darkness.

As in the case of spruce roots an increase in elongation was observed in cress roots illuminated during the geotropic stimulation. These similarities in the behaviour made it relevant to compare the development of the geotropic curvature in cress and spruce roots.