SEARCH

SEARCH BY CITATION

Keywords:

  • Cyanide;
  • cyanogenic glycoside;
  • Oryza sativa;
  • seed germination;
  • Xanthium pennsylvanicum

Both cyanogenic (Malus pumila Mill) and acyanogenic (Oryza sativa L., Hordeum vulgare L., Zea mays L., Glycine max Merr., Lactuca sativa L., and Xanthium pennsylvanicum Wallr. etc.) seeds evolve HCN gas during the early periods of water imbibition. All tested seeds contained reserve cyanogens which liberated HCN upon hydrolysis with H2SO4 and with β-glucosidase and/or lipase. The amounts of liberated HCN were roughly comparable to those of unidentified cyanogens. It is thus conceivable that the cyanogens within seeds are available as precursors for free HCN evolved in the pre-germination period. The amounts of HCN evolved in the acyanogenic seeds were only 0.002 to 1% of that in apple, but the contents of the cyanogenic compounds in rice and cocklebur increased temporarily during the pre-germination period, then decreased and, finally, disappeared completely with the start of germination.