SEARCH

SEARCH BY CITATION

Keywords:

  • Breeding;
  • Gossypium barbadense;
  • leaf area;
  • leaf temperature;
  • Pima cotton;
  • stomatal conductance

Advanced lines of Pima cotton (Gossypium barbadense L.) bred for higher yield potential and heat resistance have higher stomata conductance and smaller leaf areas than those of obsolete lines. In controlled experiments, five commercial lines of Pima cotton having increasing lint yield and heat resistance showed a gradient of increasing stomatal conductance and decreasing leaf size. In field experiments, heat-sensitive, low yield Pima lines showed a lower stomatal conductance than high yielding, advanced lines. This indicates that selection for high yield potential and heat resistance has imposed a selection pressure for higher stomatal conductance and smaller leaf areas. The higher stomatal conductance and smaller leaf area in the advanced lines resulted in a lower leaf temperature in both controlled environments and in the field. The largest leaf temperature differences between obsolete and advanced lines were observed in the afternoon. These differences coincided with the largest differences in stomatal conductance and the highest air temperatures. Measurements of stomatal conductance and leaf temperature in field-grown progeny from a cross between the advanced line, Pima S-6. and the obsolete line, Pima 32, showed that genetically determined differences in stomatal conductance resulted in corresponding differences in leaf temperature. None of the altered physiological traits were selected for in the breeding program, indicating that selection for the desired agronomic traits imposed selection pressures on the altered physiological traits. The increases in stomatal conductance and decreases in leaf area could represent an integrated response to selection pressures on enhanced evaporative cooling, ensuing from selection for heat resistance.