• Ammonium assimilation;
  • ectendomycorrhizal fungi;
  • ectomycorrhizal fungi;
  • glutamate dehydrogenase;
  • glutamine synthetase;
  • Pinus sylvestris;
  • Scots pine

Ammonium assimilation enzymes from several strains of ectendo- and ectomycorrhizal fungi were assayed after three weeks culture on a buffered synthetic medium containing ammonium as sole nitrogen source. Activity of NADP-dependent glutamate dehydrogenase (GDH, EC of ectomycorrhizal strains was very low despite excellent mycelial growth. Only ectendomycorrhizal fungus MrgX isolated from roots of Pinus sylvestris showed high GDH activity. Similar results were obtained when the enzyme extracts were subjected to starch gel electrophoresis. Growth of the fungi, except ectendomycorrhizal MrgX, was arrested when inhibitors of glutamine synthetase (GS, EC or glutamate synthase (GOGAT. EC (methionine sulphoximine or albizine, respectively) were included in the culture medium. Glutamine synthetase activity was found in all fungi tested. The results suggest that the GS pathway for ammonium assimilation is potentially operative in ectomycorrhizal fungi and imply only a minor role for GDH in ammonium assimilation by the studied ectomycorrhizal symbionts of pine. Some physiological and ecological implications of these results are discussed.