The Maillard reaction and oxidative stress during aging of soybean seeds


W. Q. Sun (corresponding author)


The chemical reactions that may lead to the loss of seed viability were investigated both during the accelerated aging and natural aging of soybeans (Glycine max Merrill cv. Chippewa 64). Under conditions of accelerated aging (36°C and 75% RH), fluorescence of soluble proteins accumulated, which was closely correlated with the loss of seed germinability and vigor. We were able to show this correlation by using partially purified proteins for the assay. Fluorescence also increased in seeds under good storage conditions (5°C for up to 21 years), although there was a less significant correlation between seed viability and the accumulation of fluorescent products during the time of natural aging. The rise in protein fluorescence is interpreted as an increase of Maillard products. The carbonyl content of soluble proteins (a measure of the oxidative damage) did not change significantly during either accelerated aging or natural aging: however the elimination of carbonyls during germination seemed to be hindered in seeds that had poor germination. The Maillard reaction may be a consequence of the formation of reducing sugars through a gradual hydrolysis of oligosaccharides during aging. Preliminary evidence from the natural aging study showed that, when seeds were in the glassy state, the sugar hydrolysis was inhibited. These results suggest that the Maillard reaction and oxidative reaction may play an important role in seed deterioration.