Correlations between the temperature dependence of chlorophyll fluorescence and the fluidity of thylakoid membranes

Authors


Correspondence

Corresponding author,

e-mail: chlee@pusan.ac.kr

Abstract

To monitor changes in membrane fluidity in Arabidopsis leaves and thylakoid membranes, we investigated the temperature dependence of a chlorophyll fluorescence parameter, minimum fluorescence (Fo), and calculated the threshold temperature [T(Fo)] at which the rise of the fluorescence level Fo was considered to be started. For the modification of membrane fluidity we took three different approaches: (1) an examination of wild-type leaves initially cultured at room temperature (22°C), then exposed to either a lower (4°C) or higher (35°C) temperature for 5 days; (2) measurements of the shift in T(Fo) by two mutants deficient in fatty acid desaturase genes – fad7 and fad7fad8 and (3) an evaluation of the performance of wild-type plants when leaves were infiltrated with chemicals that modify fluidity. When wild-type plants were grown at 22°C, the T(Fo) was 48.3 ± 0.3°C. Plants that were then transferred to a chamber set at 4 or 35°C showed a shift in their T(Fo) to 42.7 ± 0.9°C or 48.9 ± 0.1°C, respectively. Under low-temperature acclimation, the decline in this putative transition temperature was significantly less in fad7 and fad7fad8 mutants compared with the wild-type. In both leaf and thylakoid samples, values for T(Fo) were reduced in samples treated with benzyl alcohol, a membrane fluidizer, whereas T(Fo) rose in samples treated with dimethylsulfoxide, a membrane rigidifier. These results indicate that the heat-induced rise of chlorophyll fluorescence is strongly correlated with the fluidity of thylakoid membranes.

Ancillary