Host ecology determines the relative fitness of virus genotypes in mixed-genotype nucleopolyhedrovirus infections

Authors


(Present address): David J. Hodgson, School of Biological and Chemical Sciences, University of Exeter, Hatherley Laboratory, Prince of Wales Road, Exeter EX4 4PS, UK.
Tel.: +44 1392 264 674; fax: +44 1392 263 700);
e-mail: d.j.hodgson@exeter.ac.uk

Abstract

Mixed-genotype infections are common in many natural host–parasite interactions. Classical kin-selection models predict that single-genotype infections can exploit host resources prudently to maximize fitness, but that selection favours rapid exploitation when co-infecting genotypes share limited host resources. However, theory has outpaced evidence: we require empirical studies of pathogen genotypes that naturally co-infect hosts. Do genotypes actually compete within hosts? Can host ecology affect the outcome of co-infection? We posed both questions by comparing traits of infections in which two baculovirus genotypes were fed to hosts alongside inocula of the same or a different genotype. The host, Panolis flammea, is a herbivore of Pinus sylvestris and Pi. contorta. The pathogen, PfNPV (a nucleopolyhedrovirus), occurs naturally as mixtures of genotypes that differ, when isolated, in pathogenicity, speed of kill and yield. Single-genotype infection traits failed to predict the ‘winning’ genotypes in co-infections. Co-infections infected and caused lethal disease in more hosts, and produced high yields, relative to single-genotype infections. The need to share with nonkin did not cause fitness costs to either genotype. In fact, in hosts feeding on Pi. sylvestris, one genotype gained increased yields in mixed-genotype infections. These results are discussed in relation to theory surrounding adaptive responses to competition with nonkin for limited resources.

Ancillary