SEARCH

SEARCH BY CITATION

References

  • Caisse, M. & Antonovics, J. 1978. Evolution of reproductive isolation in clinal populations. Heredity 40: 371384.
  • Champagnat, N., Ferrière, R. & Ben Arous, G. 2001. The canonical equation of adaptive dynamics: a mathematical view. Selection 2: 7181.
  • Dieckmann, U. & Law, R. 1996. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34: 579612.
  • Dieckmann, U., Marrow, P. & Law, R. 1995. Evolutionary cycling in predator-prey interactions: population dynamics and the Red Queen. J. Theor. Biol. 176: 91102.
  • Doebeli, M. & Dieckmann, U. 2003. Speciation along environmental gradients. Nature 421: 259264.
  • Doebeli, M. & Ruxton, G.D. 1997. Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution 51: 17301741.
  • Durinx, M. & Metz, J.A.J. 2005. Multi-type branching processes and adaptive dynamics of structured popula-tions, section 7.8. In: Branching Processes in Biology: Variation, Growth and Extinction (P.Haccou, P.Jagers & V.Vatutin, eds). Cambridge University Press, Cambridge, UK.
  • Endler, J.A. 1977. Geographic Variation, Speciation And Clines. Princeton University Press, Princeton, NJ.
  • Geritz, S.A.H., Kisdi, É., Meszéna, G. & Metz, J.A.J. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 3557.
  • Geritz, S.A.H., van der Meijden, E. & Metz, J.A.J. 1999. Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol. 55: 324343.
  • Gyllenberg, M., Jacobs, F.J.A. & Metz, J.A.J. 2003. On the concept of attractor in community-dynamical processes II: the case of structured populations. J. Math. Biol. 47: 235248.
  • Jacobs, F.J.A. & Metz, J.A.J. 2003. On the concept of attractor in community-dynamical processes I: the case of unstructured populations. J. Math. Biol. 47: 222234.
  • Kimura, M. 1983. The Neutral Theory Of Molecular Evolution. Cambridge University Press, Cambridge, UK.
  • Le Galliard, J., Ferrière, R. & Dieckmann, U. 2003. The adaptive dynamics of altruism in spatially heterogeneous populations. Evolution 57: 117.
  • Leimar, O. 2001. Evolutionary change and Darwinian demons. Selection 2: 6572.
  • Lewontin, R.C. 1982. Keeping it clean. Nature 300: 113114.
  • Meszéna, G., Kisdi, É., Dieckmann, U., Geritz, S.A.H. & Metz, J.A.J. 2001. Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics. Selection 2: 193210.
  • Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.J.A. & van Heerwaarden, J.S. 1996. Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In: Stochastic and Spatial Structures of Dynamical Systems (S. J.vanStrien & S. M.Verduyn Lunel, eds), pp. 183231. North-Holland, Amsterdam, Netherlands.
  • Metz, J.A.J. & Gyllenberg, M. 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. Ser. B 268: 499508.
  • Metz, J.A.J., Nisbet, R.M. & Geritz, S.A.H. 1992. How should we define ‘‘fitness’’ for general ecological scenarios? Trends Ecol. Evol. 7: 198202.
  • Moore, W.S. 1981.Assortative mating genes selected along a gradient. Heredity 46: 191195.
  • Parvinen, K., Dieckmann, U., Gyllenberg, M. & Metz, J.A.J. 2003. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol. 16: 143153.
  • Rand, D.A., Wilson, H.B. & McGlade, J.M. 1994. Dynamics and evolution: evolutionarily attractors, invasion exponents and phenotype dynamics. Philos. Trans. R. Soc. Lond. Ser. B 243: 261283.
  • van Baalen, M. & Rand, D.A. 1998. The unit of selection in viscous populations and the evolution of altruism. J. Theor. Biol. 193: 631648.
  • Waxman, D. & Gavrilets, S. 2005. 20 Questions on adaptive dynamics. J. Evol. Biol. 18: 11391154.