SEARCH

SEARCH BY CITATION

Keywords:

  • aging;
  • antagonistic pleiotropy;
  • fecundity;
  • fecundity plateau;
  • force of natural selection;
  • late life;
  • mortality;
  • mortality-rate plateau;
  • viability

Abstract

Late-life fecundity has been shown to plateau at late ages in Drosophila analogously to late-life mortality rates. In this study, we test an evolutionary theory of late life based on the declining force of natural selection that can explain the occurrence of these late-life plateaus in Drosophila. We also examine the viability of eggs laid by late-age females and test a population genetic mechanism that may be involved in the evolution of late-life fecundity: antagonistic pleiotropy. Together these experiments demonstrate that (i) fecundity plateaus at late ages, (ii) plateaus evolve according to the age at which the force of natural selection acting on fecundity reaches zero, (iii) eggs laid by females in late life are viable and (iv) antagonistic pleiotropy is involved in the evolution of late-life fecundity. This study further supports the evolutionary theory of late life based on the age-specific force of natural selection.