Timing and tempo of primate speciation


Darren Curnoe, Department of Anatomy, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia.
Tel.: +61 2 9385 8025; fax: +61 2 9385 8016;
e-mail: d.curnoe@unsw.edu.au


Published molecular clocks for primates are used to estimate typical divergence times for phylogroups (1.6 Ma), species (3.3 Ma), sister species (2.7 Ma), genera (8.9 Ma) and sister genera (8.6 Ma). Significant median differences exist between major groups (infraorders and superfamilies) for various divergence times. These data are employed to estimate typical maximum duration of speciation. Typical primate values (1.1 Ma) suggest this process to be faster than is characteristic of many vertebrates. However, after considering divergence times for hybridizing congeneric and confamilial primates, this value is likely only to estimate the commencement of prezygotic isolating mechanisms, rather than the completion of reproductive isolation. Thus, speciation typically takes around 1.0 Ma to more than 4.0 Ma to occur, depending on whether prezygotic or post-zygotic isolating mechanisms are emphasized. Typical primate genus age is around 5.3 Ma, but we note differences among major groups. In light of these estimates, the classification of humans and chimpanzees is reconsidered using a molecular yardstick approach. Three taxonomic frameworks may flow from molecular analyses, all of them having major implications for understanding the evolution of humans and chimpanzees.