SEARCH

SEARCH BY CITATION

References

  • Abrams, P.A. 1992. Adaptive foraging by predators as a cause of predator–prey cycles. Evol. Ecol. 6: 5672.
  • Abrams, P.A. 2000. The evolution of predator–prey interactions: theory and evidence. Annu. Rev. Ecol. Syst. 31: 79105.
  • Abrams, P.A. 2003. Can adaptive evolution or behaviour lead to diversification of traits determining a trade-off between foraging gain and predation risk? Evol. Ecol. Res. 5: 653670.
  • Abrams, P.A. & Holt, R.D. 2002. The impact of consumer-resource cycles on the coexistence of competing consumers. Theor. Pop. Biol. 62: 281295.
  • Abrams, P.A. & Matsuda, H. 1997. Fitness minimization and dynamic instability as a consequence of predator–prey coevolution. Evol. Ecol. 11: 120.
  • Abrams, P.A., Harada, Y. & Matsuda, H. 1993. On the relationship between quantitative genetic and ESS models. Evolution 47: 982985.
  • Abrams, P.A., Brassil, C.E. & Holt, R.D. 2003. Dynamics and responses to mortality rates of competing predators undergoing predator–prey cycles. Theor. Pop. Biol. 64: 163176.
  • Armstrong, R.A. & McGehee, R. 1980. Competitive exclusion. Am. Nat. 115: 151170.
  • Chesson, P. 1994. Multispecies competition in variable environments. Theor. Pop. Biol. 45: 227276.
  • Christiansen, F. & Rugh, H.H. 1997. Computing Lyapunov spectra with continuous Gram–Schmidt orthonormalization. Nonlinearity 10: 10631072.
  • Dercole, F., Irisson, J.-O. & Rinaldi, S. 2003. Bifurcation analysis of a prey–predator coevolution model. SIAM J. Appl. Math. 63: 13781391.
  • Dieckmann, U., Marrow, P. & Law, R. 1995. Evolutionary cycling in predator–prey interactions: population dynamics and the Red Queen. J. Theor. Biol. 176: 91102.
  • Doebeli, M. 1997. Genetic variation and the persistence of predator–prey interactions in the Nicholson–Bailey model. J. Theor. Biol. 188: 109120.
  • Doebeli, M. & Dieckmann, U. 2000. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156: S77S101.
  • Ferriere, R. & Gatto, M. 1995. Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theor. Pop. Biol. 48: 126171.
  • Gavrilets, S. 1997. Coevolutionary chase in exploiter-victim systems with polygenic characters. J. Theor. Biol. 186: 527534.
  • Geritz, S.A.H., Kisdi, E., Meszéna, G. & Metz, J.A.J. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 3557.
  • Gyllenberg, M. & Parvinen, K. 2001. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol. 63: 981993.
  • Hsu, S.B., Hubbell, S.P. & Waltman, P. 1978a. Competing predators. SIAM J. Appl. Math. 35: 617625.
  • Hsu, S.B., Hubbell, S.P. & Waltman, P. 1978b. A contribution to the theory of competing predators. Ecol. Monogr. 48: 337349.
  • Huisman, J.E.F. & Weissing, F.J. 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407410.
  • Kendall, B.E., Prendergast, J. & Bjornstad, O.N. 1998. The macroecology of population dynamics: taxonomic and biogeographic patterns in population cycles. Ecol. Letters 1: 160164.
  • Kisdi, E. 1998. Frequency dependence versus optimization. Trends Ecol. Evol. 13: 508.
  • Kisdi, E. & Meszéna, G. 1993. Density dependent life history evolution in fluctuating environments. In: Adaptation in a Stochastic Environment. Lecture Notes in Biomathematics, Vol. 98 (J.Yoshimura & C.Clark, eds), pp. 2662, Springer Verlag, Berlin.
  • Koch, A.L. 1974. Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. J. Theor. Biol. 44: 387395.
  • Levins, R. 1979. Coexistence in a variable environment. Am. Nat. 114: 765783.
  • Liu, W., Xiao, D. & Yi, Y. 2003. Relaxation oscillations in a class of predator–prey systems. J. Differential Equations 188: 306331.
  • MacArthur, R. & Levins, R. 1964. Competition, habitat selection, and character displacement in a patchy environment. Proc. Natl. Acad. Sci. USA 51: 12071210.
  • Marrow, P., Law, R. & Cannings, C. 1992. The coevolution of predator–prey interactions: ESSs and Red Queen dynamics. Proc. R. Soc. Lond. B 250: 133141.
  • Marrow, P., Dieckmann, U. & Law, R. 1996. Evolutionary dynamics of predator–prey systems: an ecological perspective. J. Math. Biol. 34: 556578.
  • McGehee, R. & Armstrong, R.A. 1977. Some mathematical problems concerning the ecological principle of competitive exclusion. J. Differential Equations 23: 3052.
  • Meszéna, G. & Metz, J.A.J. 1999. Species diversity and population regulation: The importance of environmental feed-back dimensionality. In: Elements of Adaptive Dynamics (U.Dieckmann & J. A. J.Metz, eds), Cambridge University Press, Cambridge, in press. Also available as IIASA Interim Report IR-99-045, [URL document]. http://www.iiasa.ac.at/cgi-bin/pubsrch?IR99045.
  • Meszéna, G., Kisdi, E., Dieckmann, U., Geritz, S.A.H. & Metz, J.A.J. 2001. Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics. Selection 2: 193210. Also available as WWW document. URL http://angel.elte.hu/geza/FEJ-13.PDF.
  • Metz, J.A.J., Nisbet, R.M. & Geritz, S.A.H. 1992. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol. 7: 198202.
  • Metz, J.A.J., Mylius, S.D. & Diekmann, O. 1996. When does evolution optimise? On the relation between types of density dependence and evolutionarily stable life history parameters. In: Elements of Adaptive Dynamics (U.Dieckmann & J. A. J.Metz, eds), Cambridge University Press, Cambridge, in press. Also available as IIASA Working paper WP-96–004, IIASA, Laxenburg (Austria). [URL document]. http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004.
  • Muratori, S. & Rinaldi, S. 1989. Remarks on competitive coexistence. SIAM J. Appl. Math. 49: 14621472.
  • Mylius, S.D. & Diekmann, O. 1995. On evolutionarily stable life histories, optimization and the need to be specific about density dependence. Oikos 74: 218224.
  • Nelson, W.A., McCauley, E. & Wrona, F.J. 2005. Stage-structured cycles promote genetic diversity in a predator–prey system of Daphnia and algae. Nature 433: 413417.
  • Rosenzweig, M.L. & MacArthur, R.H. 1963. Graphical representation and stability conditions of predator–prey interactions. Am. Nat. 97: 209223.
  • Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.
  • Van der Laan, J.D. & Hogeweg, P. 1995. Predator–prey coevolution: interactions across different timescales. Proc. R. Soc. Lond. B 259: 3542.
  • Volterra, V. 1927. Variazioni e fluttuazioni del numero d'individui in specie animali convivienti [Variations and Fluctuations of Population Size in Coexisting Animal Species]. Atti Reale Accad. Nazionale dei Lincei, Serie VI, Memorie della Classe di Scienze Fisiche, Matematiche e Naturali, II: 31112. [Translation: F. Oliveira-Pinto & B.W. Conolly: Applicable Mathematics of Non-Physical Phenomena, Ellis Horwood Ltd., pp. 23–115].
  • Wilson, W.G. & Abrams, P.A. 2005. Coexistence of cycling, dispersing consumer species: Armstrong and McGehee in space. Am. Nat. 165: 193205.