SEARCH

SEARCH BY CITATION

Keywords:

  • adaptation;
  • asymmetric dispersal;
  • allozyme;
  • balancing selection;
  • gene flow;
  • marine invertebrates

Abstract

Elucidating the processes responsible for maintaining polymorphism at ecologically relevant genes is intimately related to understanding the interplay between selection imposed by habitat heterogeneity and a species’ capacity for dispersal in the face of environmental constraints. In this paper, we used a model-based approach to solve equilibria of balanced polymorphism, given values of fitness and larval dispersal among different habitats in the acorn barnacle Semibalanus balanoides from the Gulf of St Lawrence. Our results showed that allele frequencies observed at both MPI* and GPI* loci represented stable equilibria, given empirical estimates of fitness values, and that considerably more larvae dispersed from one region (north) to the other (south) than vice versa. Dispersal conditions were predicted to be similar for the maintenance of polymorphism at both loci. Moreover, the values of asymmetrical dispersal required by the model to reach stable equilibria were compatible with empirical estimates of larval dispersal and oceanic circulation documented in this system. Overall, this study illustrated the usefulness of a modified and computable version of Bulmer's model (1972) in order to test hypotheses of balanced polymorphism resulting from interactions between spatial selection and asymmetrical dispersal.