SEARCH

SEARCH BY CITATION

References

  • Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P. & Slowinski, J.B. 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33: 707740.
  • Brenner, R.L., Ludvigson, G.A., Witzke, B.J., Zawistoski, A.N., Kvale, E.P., Ravn, R.L. & Joeckel, R.M. 2000. Late Albian Kiowa-Skull Creek marine transgression, Lower Dakota Formation, eastern margin of Western Interior Seaway, USA. J. Sediment. Res. 70: 868878.
  • Cevallos-Ferriz, S.R. & Stockey, R.A. 1991. Fruits and seeds from the Princeton Chert (middle Eocene) of British Columbia: Rosaceae (Prunoideae). Bot. Gaz. 152: 369379.
  • Crane, P.R. 1989. Early fossil history and evolution of the Betulaceae. In: Evolution, Systematics, and Fossil History of the Hamamelidae, Vol. 2: ‘Higher’ Hamamelidae (P. R.Crane & S.Blackmore, eds), pp. 87116. Systematics Association and Clarendon Press, Oxford, UK.
  • Crane, P.R., Manchester, S.R. & Dilcher, D.L. 1990. A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene), near Almont, North Dakota. Fieldiana 20: 163.
  • Crepet, W.L. & Nixon, K.C. 1998. Fossil Clusiaceae from the late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. Am. J. Bot. 85: 11221133.
  • Doyle, J.A. & Robbins, E.I. 1977. Angiosperm pollen zonation of the continental Cretaceous of the Atlantic coastal plain and its application to deep wells in the Salisbury embayment. Palynology 1: 4378.
  • Edwards, S.V. & Beerli, P. 2000. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54: 18391854.
  • Ehrlich, P.R. & Raven, P.H. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586608.
  • Ervik, F. & Knudsen, J.T. 2003. Water lilies and scarabs: faithful partners for 100 million years? Biol. J. Linn. Soc. 80: 539543.
  • Farrell, B.D. 1998a. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281: 555559.
  • Farrell, B.D. 1998b. The timing of insect/plant diversification: might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. 63: 553577.
  • Farrell, B.D. 2001. Evolutionary assembly of the milkweed fauna: cytochrome oxidase I and the age of Tetraopes beetles. Mol. Phylogenet. Evol. 18: 467478.
  • Friis, E.M. 1985. Angiosperm fruits and seeds from the middle Miocene of Jutland (Denmark). Biol. Skrif. Kon. Dan. Videns. Selsk. 24: 1165.
  • Gradstein, F.M. & Ogg, J.G. 2004. Geologic time scale 2004 – why, how and where next! Lethaia 37: 175181.
  • Grimaldi, D.A. 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann. Mo. Bot. Gard. 86: 373406.
  • Herendeen, P.S., Magallón-Puebla, S., Lupia, R., Crane, P.R. & Kobylinska, J. 1999. A preliminary conspectus of the Allon Flora from the late Cretaceous (late Santonian) of central Georgia, USA. Ann. Mo. Bot. Gard. 86: 407471.
  • Hill, R.S. & Dettmann, M.E. 1996. Origin and diversification of the genus Nothofagus. In: The Ecology and Biogeography of Nothofagus Forests (T. T.Veblen, R. S.Hill & J.Read, eds), pp. 1124. Yale University Press, New Haven, USA.
  • Hudson, R.R. 1990. Gene genealogies and the coalescent process. Oxford Surv. Evol. Biol. 7: 144.
  • Huelsenbeck, J.P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754755.
  • Ihaka, R. & Gentlemen, R. 1996. R: a language for data analysis and graphics. J. Comp. Graph. Stat. 5: 299314.
  • Jermy, T. 1976. Insect-host-plant relationships – coevolution or sequential evolution? Symp. Biol. Hung. 16: 109113.
  • Judd, W.S., Campbell, C.S., Kellogg, E.A. & Stevens, P.F. 1999. Plant Systematics: A Phylogenetic Approach Sinauer. Sunderland, Massachusetts, USA.
  • Kergoat, G.J., Alvarez, N., Hossaert-Mckey, M., Faure, N. & Silvain, J.-F. 2005. Parallels in the evolution of the two largest New and Old World seed-beetle genera (Coleoptera, Bruchidae). Mol. Ecol. 14: 40034021.
  • Kevan, P.G., Chaloner, W.G. & Savile, D.B.O. 1975. Interrelationships of early terrestrial arthropods and plants. Palaeontology 18: 391417.
  • Kozlov, M.V. 1988. Paleontology of lepidopterans and problems of the phylogeny of the order Papilionida. In: The Mesozoic-Cenozoic Crisis in the Evolution of Insects (A. G.Ponomarenko, ed.), pp. 1669. Academy of Sciences, Moscow.
  • Krassilov, V.A. & Bacchia, F. 2000. Cenomanian florule of Nammoura, Lebanon. Cret. Res. 21: 785799.
  • Kristensen, N.P. & Skalski, A.W. 1999. Phylogeny and palaeontology. In: Lepidoptera, Moths and Butterflies. Vol. 1: Evolution, Systematics, and Biogeography (N. P.Kristensen, ed.), Handbuch der Zoologie, Band IV (Arthropoda: Insecta), Teilband 35, pp. 725. Walter de Gruyter, Berlin, Germany.
  • Labandeira, C.C. 2002. The history of associations between plants and animals. In: Plant-Animal Interactions – An Evolutionary Approach (C. M.Herrera & O.Pellmyr, eds), pp. 2674, 248–261. Blackwell Science, Oxford, UK.
  • Labandeira, C.C., Dilcher, D.L., Davis, D.R. & Wagner, D.L. 1994. Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution. Proc. Natl Acad. Sci. U S A 91: 1227812282.
  • Labandeira, C.C., Johnson, K.R. & Lang, P. 2002. A preliminary assessment of insect herbivory across the Cretaceous/Tertiary boundary: major extinction and minimal rebound. In: The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains – An Integrated Continental Record at the End of the Cretaceous (J. H.Hartman, K. R.Johnson & D. J.Nichols, eds), Geol. Soc. Am. Spec. Pap. 361: 297327.
  • Larget, B. & Simon, D.L. 1999. Markov Chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 16: 750759.
  • Loader, C. 1999. Local Regression and Likelihood. Springer Mathematics, New York, USA.
  • Lopez-Vaamonde, C., Rasplus, J.Y., Weiblen, G.D. & Cook, J.M. 2001. Molecular phylogenies of fig waSPS: partial co-cladogenesis between pollinators and parasites. Mol. Phylogenet. Evol. 21: 5571.
  • Lopez-Vaamonde, C., Godfray, C. & Cook, J.M. 2003. Evolutionary dynamics of host-plant use in a genus of leaf mining moth. Evolution 57: 18041821.
  • Lopez-Vaamonde, C., Godfray, C., West, S.A., Hansson, C. & Cook, J.M. 2005. The evolution of host use and unusual reproductive strategies in Achrysocharoides parasitoid waSPS. J. Evol. Biol. 18: 10291041.
  • Magallón, S. 2004. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. Int. J. Plant Sci. 165: 721.
  • Magallón, S. & Sanderson, M. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 17621780.
  • Manchester, S.R. 1989. Systematics and fossil history of the Ulmaceae. In: Evolution, Systematics, and Fossil History of the Hamamelidae, Vol. II: ‘Higher’ Hamamelidae (P. R.Crane & S.Blackmore, eds), pp. 221252. Clarendon Press, Oxford, UK.
  • Manchester, S.R. 1994. Fruits and seeds of the middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontol. Am. 58: 1205.
  • Manchester, S.R. 1999. Biogeographical relationships of North American Tertiary floras. Ann. Mo. Bot. Gard. 86: 472502.
  • Manchester, S.R., Dilcher, D.L. & Tidwell, W.D. 1986. Interconnected reproductive structures and vegetative remains of Populus (Salicaceae) from the middle Eocene Green River Formation, northeastern Utah. Am. J. Bot. 73: 156160.
  • Marshall, C.R. 1997. Confidence intervals on stratigraphic ranges with nonrandom distributions of fossil horizons. Paleobiology 23: 165173.
  • Meyer, H.W. & Manchester, S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation, Oregon. Univ. Calif. Public Geol. Sci. 141: 1195.
  • Mitter, C. & Farrell, B.D. 1991. Macroevolutionary aspects of insect-plant relationships. In: Insect-Plant Interactions (E.Bernays, ed.), pp. 3578. CRC Press, Boca Raton, Florida, USA.
  • Percy, D.M., Page, R.D.M. & Cronk, Q.C.B. 2004. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Syst. Biol. 53: 120127.
  • Pigg, K.B., Manchester, S.R. & Wehr, W.C. 2003. Corylus, Carpinus, and Palaeocarpinus (Betulaceae) from the middle Eocene Klondike Mountain and Allenby formations of northwestern North America. Int. J. Plant Sci. 164: 807822.
  • Posada, D. & Crandall, K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817818.
  • Powell, J.A. 1980. Evolution of larval food preferences in microlepidoptera. Annu. Rev. Entomol. 25: 133159.
  • Powell, J.A., Mitter, C. & Farrell, B. 1999. Evolution of larval food preferences in Lepidoptera. In: Lepidoptera, Moths and Butterflies, Vol. 1: Evolution, Systematics, and Biogeography (N. P.Kristensen, ed.), Handbuch der Zoologie, Band IV (Arthropoda: Insecta), Teilband 35, pp. 403422. Walter de Gruyter, Berlin, Germany.
  • Ren, D. 1995. Insects. In: Faunae and Stratigraphy of Jurassic-Cretaceous in Beijing and Adjacent Areas (D.Ren, L.Lu, Z.Guo & S.Ji, eds), pp. 54197. Geological Publishing House, Beijing, China.
  • Rodriguez-Trelles, F., Tarrio, R. & Ayala, F.J. 2002. A methodological bias toward overestimation of molecular evolutionary time scales. Proc. Natl Acad. Sci. U S A 99: 81128115.
  • Romero, E.J. 1986. Fossil evidence regarding the evolution of Nothofagus Blume. Ann. Mo. Bot. Gard. 73: 276283.
  • Ronquist, F. 2004. Bayesian inference of character evolution. Trends Ecol. Evol. 19: 475481.
  • Ronquist, F. & Liljeblad, J. 2001. Evolution of the gall-wasp-host plant association. Evolution 55: 25032522.
  • Sanderson, M.J. 1997. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14: 12181231.
  • Sanderson, M.J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19: 101109.
  • Sanderson, M. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301302.
  • Schoonhoven, L.M., Jermy, T. & Van Loon, J.J.A. 1998. Insect-Plant Biology: From Physiology to Evolution. 409 p. Chapman and Hall, London, UK.
  • Sequeira, A.S. & Farrell, B.D. 2001. Evolutionary origins of Gondwanan interactions: how old are Araucaria beetle herbivores? Biol. J. Linn. Soc. 74: 459474.
  • Sims, H., Herendeen, P.S. & Crane, P.R. 1998. New genus of fossil Fagaceae from the Santonian (late Cretaceous) of central Georgia, USA. Int. J. Plant Sci. 159: 391404.
  • Soltis, P.S., Soltis, D.E., Savolainen, V., Crane, P.R. & Barraclough, T.G. 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence of molecular living fossils. Proc. Natl Acad. Sci. U S A 99: 44304435.
  • Strathmann, R.R. & Slatkin, M. 1983. The improbability of animal phyla with few species. Paleobiology 9: 97106.
  • Strong, D.R., Lawton, J.H. & Southwood, T.R.E. 1984. Insects on Plants: Community Patterns and Mechanisms. 313 p. Harvard University Press, Cambridge.
  • Stuessey, T.F. 2004. A transitional-combinational theory for the origin of angiosperms. Taxon 53: 316.
  • Sun, G., Zheng, S., Dilcher, D.L., Wang, Y. & Mei, S. 2001. Early Angiosperms and their Associated Plants from Western Liaoning, China. 227 p. Shanghai Scientific and Technological Education Publishing House, Shanghai, China.
  • Thorne, J.L., Kishino, H. & Painter, I.S. 1998. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15: 16471657.
  • Wang, H.-S. 2002. Diversity of angiosperm leaf megafossils from the Dakota Formation (Cenomanian, Cretaceous), north western interior, USA. 395 p. PhD thesis, University of Florida, FL, USA.
  • Weiblen, G.D. & Bush, G.L. 2002. Speciation in fig pollinators and parasites. Mol. Ecol. 11: 15731578.
  • Welch, J.J. & Bromham, L. 2005. Molecular dating when rates vary. Trends Ecol. Evol. 20: 320327.
  • Wikström, N., Savolainen, V. & Chase, M.W. 2003. Angiosperm divergence times: congruence and incongruence between fossils and sequence divergence estimates. In: Telling the Evolutionary Time: Molecular Clocks and the Fossil Record (P. C. J.Donoghue & M. P.Smith, eds), pp. 142165. CRC Press, Boca Raton, USA.
  • Wilde, V. & Frankenhäuser, H. 1998. The middle Eocene plant taphocoenosis from Eckfeld (Eifel, Germany). Rev. Palaeobot. Palynol. 101: 728.
  • Wilf, P., Labandeira, C.C., Kress, W.J., Staines, C.L., Windsor, D.M., Allen, A.L. & Johnson, K.R. 2000. Timing the radiations of leaf beetles: hispines on gingers from latest Cretaceous to recent. Science 289: 291294.
  • Wilf, P., Labandeira, C.C., Johnson, K.R., Coley, P.D. & Cutter, A.D. 2001. Insect herbivory, plant defense, and early Cenozoic climate change. Proc. Natl Acad. Sci. U S A 98: 62216226.
  • Wilson, M.V.H. 1983. Is there a characteristic rate of radiation for insects? Paleobiology 9: 7985.
  • Yoder, A.D. & Yang, Z. 2004. Divergence dates for Malgasy lemurs estimated from multiple gene loci: geological and evolutionary context. Mol. Ecol. 13: 757773.
  • Zherikhin, V.V., Mostovski, M.B., Vršanský, P., Blagoderov, V.A. & Lukashebvich, E.D. 1999. The unique lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in north and west Transbaikalia. In: Proceedings of the First Palaeoentomological Conference, Moscow (1998) (P.Vršanský, ed.), pp. 185191. AMBA Projects, Bratislava, Slovakia.