SEARCH

SEARCH BY CITATION

References

  • Ancel, L. 1999. A quantitative model of the Simpson-Baldwin effect. J. Theor. Biol. 196: 197209.
  • Ancel, L. 2000. Undermining the Baldwin expediting effect: does phenotypic plasticity accelerate evolution? Theor. Popul. Biol. 58: 207319.
  • Ancel, L. & Fontana, W. 2000. Plasticity, evolvability, and modularity in RNA. J. Exp. Zool. 288: 242283.
  • Anderson, R. 1995. Learning and evolution: a quantitative genetics approach. J. Theor. Biol. 175: 89101.
  • Baldwin, J. 1896. A new factor in evolution. Am. Nat. 30: 441451.
  • Belew, R. 1990. Evolution, learning, and culture: computational metaphors for adaptive algorithms. Complex Systems 4: 1149.
  • Burch, C. L. & Chao, L. 1999. Evolution by small steps and rugged landscapes in the RNA virus φ6. Genetics 151: 921927.
  • Dopazo, H., Gordon, M., Perazzo, R. & Risau-Gusman, S. 2001. A model for the interaction of learning and evolution. Bull. Math. Biol. 63: 117134.
  • Downing, K. 2004. Development and the Baldwin effect. Artif. Life 10: 3963.
  • Floreano, D. & Urzelai, J. 1998. Evolution and learning in autonomous robotic agents. In: Bio-inspired Computing Systems (D.Mange & M.Tomassini, eds), pp. 136. PPUR, Lausanne.
  • Fong, S., Joyce, A. & Palsson, B. 2005. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Research 15: 13651372.
  • Fontanari, J. & Meir, R. 1990. The effect of learning on the evolution of asexual populations. Complex Systems 4: 401414.
  • French, R. & Messinger, A. 1994. Genes, phenes and the Baldwin effect: Learning and evolution in a simulated population. In: Artificial Life IV (R.Brooks & P.Maes, eds), pp. 277282. MIT Press, Cambridge, MA.
  • Gavrilets, S. & Hastings, A. 1994. A quantitative-genetic model for selection on developmental noise. Evolution 48: 14781486.
  • Goldberg, D. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Reading, MA.
  • Gruau, F. & Whitley, D. 1993. Adding learning to the cellular development of neural networks: evolution and the Baldwin effect. Evol. Comput. 1: 213233.
  • Hinton, G. & Nowlan, S. 1987. How learning can guide evolution. Complex Systems 1: 495502.
  • Hughes, B. 1995. Random Walks and Random Environments, volume 1. Clarendon Press, Oxford.
  • Huynen, M., Stadler, P. & Fontana, W. 1996. Smoothness within ruggedness: The role of neutrality in adaptation. Proc. Natl. Acad. Sci. 93: 397401.
  • Kallel, L., Naudts, B. & Reeves, C. 2001. Properties of fitness functions and search landscapes. In: Theoretical Aspects of Evolutionary Computing (L.Kallel, B.Naudts & A.Rogers, eds), pp. 175206. Springer, Berlin.
  • Kauffman, S. A. 1993. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York.
  • Kauffman, S. & Levin, S. 1987. Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128: 1145.
  • Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge, UK.
  • Kirkpatrick, S., Gelatt, C. & Vecchi, M. 1983. Optimization by simulated annealing. Science 220: 671680.
  • Korona, R., Nakatsu, C., Forney, L. & Lenski, R. 1994. Evidence for multiple adaptive peaks from populations of bacteria evolving in a structured habitat. Proc. Natl. Acad. Sci. 91: 90379041.
  • Lenski, R., Ofria, C., Collier, T. & Adami, C. 1999. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400: 661664.
  • Littman, M. 1996. Simulations combining evolution and learning. In: Adaptive Individuals in Evolving Populations: Models and Algorithms (R. K.Belew & M.Mitchell, eds), pp. 465477. Addison Wesley, Reading, MA.
  • Littman, M. & Ackley, D. 1991. Adaptation in constant utility non-stationary environments. In: Proceedings of the Fourth International Conference on Genetic Algorithms (R.Belew & L.Booker, eds), pp. 136142, Morgan Kaufmann, San Mateo, CA.
  • Macken, C. & Perelson, A. 1989. Protein evolution on rugged landscapes. Proc. Natl. Acad. Sci. 86: 61916195.
  • Mayley, G. 1996. Landscapes, learning costs and genetic assimilation. Evol. Comput. 4: 213234.
  • Mayley, G. 1997. Guiding or hiding: explorations into the effects of learning on the rate of evolution. In: Proceedings of the Fourth European Conference on Artificial Life (P.Husbands & I.Harvey, eds), pp. 135144. Bradford Books/MIT Press, Cambridge, MA.
  • Maynard-Smith, J. 1987. Natural selection: when learning guides evolution. Nature 329: 761762.
  • Meilijson, I. 2003. The time to a given drawdown in Brownian motion. Séminaire de Proba- bilités XXXVII., Springer Lecture Notes in Mathematics 1832: 94108.
  • Menczer, F. & Belew, R. 1994. Evolving sensors in environments of controlled complexity. In: Artificial Life IV (R.Brooks & P.Maes, eds), pp. 210221. MIT Press, Cambridge, MA.
  • Mery, F. & Kawecki, T. 2002. Experimental evolution of learning ability in fruit flies. Proc. Natl. Acad. Sci. 99: 1427414279.
  • Mery, F. & Kawecki, T. 2004. The effect of learning on experimental evolution of resource preference in Drosophila melanogaster. Evolution 58: 757767.
  • Morgan, C. 1896. On modification and variation. Science 4: 733740.
  • Moriarty, D. & Mikkulainen, R. 1996. Efficient reinforcement learning through symbiotic evolution. Mach. Learn. 22: 1132.
  • Nolfi, S. & Floreano, D. 1999. Learning and evolution. Auton. Robot. 7: 89113.
  • Nolfi, S. & Parisi, D. 1997. Learning to adapt to changing environment in evolving neural networks. Adaptive Behavior 1: 99105.
  • Noskowicz, S. & Goldhirsch, I. 1990. First passage time distribution in random random walk. Phys. Rev. A42: 20472064.
  • Oksanen, L. & Lundberg, P. 1995. Optimization of reproductive effort and foraging time in mammals: The influence of resource level and predation risk. Evol. Ecol. 9: 4556.
  • Parisi, D. & Nolfi, S. 1996. The influence of learning on evolution. In: Adaptive Individuals in Evolving Populations: Models and Algorithms (R. K.Belew & M.Mitchell, eds), pp. 419428. Addison Wesley, Reading, MA.
  • Schlichting, C. & Pigliucci, M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer Associates Inc., Sunderland, MA.
  • Spitzer, F. 2001. Principles of Random Walk, 2nd edn. Springer, New-York.
  • Stadler, P. 1995. Towards a theory of landscapes. In: Complex Systems and Binary Networks (R.Lopéz-Peña, R.Capovilla, R.García-Pelayo, H.Waelbroeck & F.Zertuche, eds), pp. 77163. Springer Verlag, Berlin, New York.
  • Todd, P. & Miller, G. 1991. Exploring adaptive agency II: simulating the evolution of associative learning. In: From Animals to Animals: Proceedings of the First International Conference on Simulation of Adaptive Behavior (J.Meyer & S.Wilson, eds), pp. 306315, MIT Press, Cambridge, MA.
  • Waddington, C. 1942. Canalization of development and the inheritance of acquired characters. Nature 150: 563565.
  • Waddington, C. 1953. Genetic assimilation for acquired character. Evolution 7: 118126.
  • Weber, B. & Depew, D., eds 2003. Learning and Evolution. The Baldwin Effect Reconsidered. MIT Press, Cambridge, MA.
  • Weinberger, E. 1990. Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63: 325336.
  • West-Eberhard, M. 2003. Developmental Plasticity and Evolution. Oxford University Press, New York.
  • Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the Sixth International Congress of Genetics, volume 1, (D.F.Jones, ed.), pp. 356366. Brooklyn Botanic Garden, Brooklyn, NY.