• ejaculate size;
  • evolutionary stable strategy;
  • genetic algorithm;
  • female mating frequency;
  • sperm competition;
  • sperm precedence;
  • strategic sperm allocation


Theoretical models predict that males should allocate more sperm in matings where the immediate risk of sperm competition is high. It has therefore often been argued that males should invest less sperm in matings with virgin females compared with matings with already mated females. However, with relatively polyandrous females, high sperm competition risk will covary with high sperm competition intensity leading to more unpredictable conditions, as high competition intensity should favour smaller ejaculates. With the use of a genetic algorithm, we found that males should allocate more sperm in matings with virgin females when female mating frequency is relatively high, whereas low remating rates will select for higher effort in matings with nonvirgin females. At higher remating rates, first male sperm precedence favours larger ejaculates in matings with virgin females and second male precedence favours the reverse. These results shed some light on several findings that have been difficult to explain adaptively by the hitherto developed theory on sperm allocation.