• cyclical parthenogenesis;
  • hybridogenesis;
  • mutation accumulation;
  • Rana esculenta;
  • Rana lessonae;
  • recombination


Rare recombination in otherwise asexually reproducing organisms is known to beneficially influence the fitness in small populations. In most of the investigated organisms, asexual and rare sexual generations with recombination follow each other sequentially. Here we present a case where clonal reproduction and rare recombination occur simultaneously in the same population. The hybridogenetic water frog Rana esculenta (E), a hybrid between R. lessonae (L) and R. ridibunda (R) produces gametes that only contain the unaltered maternal R part of their genome. New generations of R. esculenta usually arise from E × L matings. Intraspecific E × E matings produce mostly inviable offspring, but in rare cases, female R. ridibunda arise from such matings which are capable of recombination. In the absence of conspecific males, these R females have to mate with E males, which results in further R females, or with L males, which produces new E lineages. This indirect mechanism reintroduces recombination into the otherwise clonally transmitted R genomes in R. esculenta populations. In this study, we show through Monte Carlo simulations that, in most cases, it is sufficient that only between 1 % and 10 % of mixed water frog populations consist of R females to prevent or significantly reduce the fixation and accumulation of deleterious mutations.