• assortative mating;
  • colour polymorphism;
  • Gouldian finch;
  • mate choice


Mate choice has important evolutionary consequences because it influences assortative mating and the level of genetic variation maintained within populations. In species with genetically determined polymorphisms, nonrandom mate choice may affect the evolutionary stability and maintenance (or loss) of alternative phenotypes. We examined the mating pattern in the colour polymorphic Gouldian finch (Erythrura gouldiae), and the role of mate choice, both female and male, in maintaining the three discrete head colours (black, red and yellow). In both large captive and wild populations, Gouldian finches paired assortatively with respect to head colour. In mate choice trials, females showed a strong preference for mates with the most elaborate sexually dimorphic traits (i.e. more chromatic UV/blue plumage and longer pin-tail feathers), but did not discriminate assortatively. Unexpectedly, however, males were particularly choosy, associating and pairing only with females of their own morph-type. Although female mate choice is generally invoked as the major selective force maintaining conspicuous male colouration in sexually dichromatic species, and is typically thought to drive nonrandom mating, these findings suggest that mutual mate choice and male mate choice in particular, are an important yet neglected component of selection.