SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Katherina B Brokordt, Federico M Winkler, William J Farías, Roxana C González, Fabio Castaño, Philippe Fullsack, Christophe M Herbinger, Changes of heritability and genetic correlations in production traits over time in red abalone (Haliotis rufescens) under culture, Aquaculture Research, 2014, 45, 5
  2. 2
    Sigurd Einum, Ecological Modeling of Metabolic Rates Predicts Diverging Optima across Food Abundances, The American Naturalist, 2014, 183, 3, 410

    CrossRef

  3. 3
    Roberto F. Nespolo, José L. Bartheld, Avia González, Andrea Bruning, Derek A. Roff, Leonardo D. Bacigalupe, Juan D. Gaitán-Espitia, The quantitative genetics of physiological and morphological traits in an invasive terrestrial snail: additive vs. non-additive genetic variation, Functional Ecology, 2014, 28, 2
  4. 4
    K J Mathot, K Martin, B Kempenaers, W Forstmeier, Basal metabolic rate can evolve independently of morphological and behavioural traits, Heredity, 2013, 111, 3, 175

    CrossRef

  5. 5
    Craig R. White, Michael R. Kearney, Determinants of inter-specific variation in basal metabolic rate, Journal of Comparative Physiology B, 2013, 183, 1, 1

    CrossRef

  6. 6
    Marek Konarzewski, Aneta Książek, Determinants of intra-specific variation in basal metabolic rate, Journal of Comparative Physiology B, 2013, 183, 1, 27

    CrossRef

  7. 7
    Amélie Crespel, Louis Bernatchez, Dany Garant, Céline Audet, Genetically based population divergence in overwintering energy mobilization in brook charr (Salvelinus fontinalis), Genetica, 2013, 141, 1-3, 51

    CrossRef

  8. 8
    T. Fuchikawa, K. Okada, Inter- and intrasexual genetic correlations of exaggerated traits and locomotor activity, Journal of Evolutionary Biology, 2013, 26, 9
  9. 9
    Juan Diego Gaitán-Espitia, Andrea Bruning, Fredy Mondaca, Roberto F. Nespolo, Intraspecific variation in the metabolic scaling exponent in ectotherms: Testing the effect of latitudinal cline, ontogeny and transgenerational change in the land snail Cornu aspersum, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2013, 165, 2, 169

    CrossRef

  10. 10
    Andrea Bruning, Juan Diego Gaitán-Espitia, Avia González, José Luis Bartheld, Roberto F. Nespolo, Metabolism, Growth, and the Energetic Definition of Fitness: A Quantitative Genetic Study in the Land SnailCornu aspersum, Physiological and Biochemical Zoology, 2013, 86, 5, 538

    CrossRef

  11. 11
    Lucy Merritt, Philip G. D. Matthews, Craig R. White, Performance correlates of resting metabolic rate in garden skinks Lampropholis delicata, Journal of Comparative Physiology B, 2013, 183, 5, 663

    CrossRef

  12. 12
    Indrikis Krams, Inese Kivleniece, Aare Kuusik, Tatjana Krama, Raivo Mänd, Markus J. Rantala, Santa Znotiņa, Todd M. Freeberg, Marika Mänd, Predation promotes survival of beetles with lower resting metabolic rates, Entomologia Experimentalis et Applicata, 2013, 148, 1
  13. 13
    Zbyszek Boratyński, Esa Koskela, Tapio Mappes, Eero Schroderus, Quantitative genetics and fitness effects of basal metabolism, Evolutionary Ecology, 2013, 27, 2, 301

    CrossRef

  14. 14
    Feng Luo, Nathan R. Rustay, Ulrich Ebert, Vincent P. Hradil, Todd B. Cole, Daniel A. Llano,