SEARCH

SEARCH BY CITATION

References

  • Bacigalupe, L.D., Nespolo, R.F., Bustamine, D.M. & Bozinovic, F. 2004. The quantitative genetics of sustained energy budget in a wild mouse. Evolution 58: 421429.
  • Bech, C., Langseth, I. & Gabrielsen, G.W. 1999. Repeatability of basal metabolism in breeding kittiwakes Rissa tritactyla. Proc. R. Soc. Lond. B 266: 21612167.
  • Bech, C., Rønning, B. & Moe, B. 2004. Individual variation in basal metabolism of Zebra finches Taeniopygia guttata: no effect of food quality during early development. Int. Congr. Series 1275: 306312.
  • Bennett, P.M. & Harvey, P.H. 1987. Active and resting metabolism in birds: allometry, phylogeny and ecology. J. Zool. Lond. 213: 327363.
  • Blanckenhorn, W.U. 2002. The consistency of quantitative genetic estimates in field and laboratory in yellow dung fly. Genetica 114: 171182.
  • Bouchard, C., Warwick, D.E., Rice, T., Pérusse, L., Gagnon, J., Province, M.A., Leon, A.S., Rao, D.C., Skinner, J.S. & Wilmore, J.H. 1998. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med. Sci. Sports Exerc. 30: 252258.
  • Bouchard, C., Ping, A., Rice, T., Skinner, J.S., Wilmore, J.H., Gagnon, J., Pérusse, L., Leon, A.S. & Rao, D.C. 1999. Familial aggregation of VO2max response to exercise training: results from the HERITAGE family study. J. Appl. Physiol. 87: 10031008.
  • Broggi, J., Hohtola, E., Orell, M. & Nilsson, J.Å. 2005. Local adaptation to winter conditions in a passerine spreading north: a common garden approach. Evolution 59: 16001603.
  • Damme, K., Pirchner, H., Willeke, H. & Eichinger, H. 1986. Fasting metabolic rate in hens. 2. strain differences and heritability estimates. Poultry Sci. 65: 616620.
  • Dohm, M.R., Hayes, J.P. & Garland, T. 2001. The quantitative genetics of maximal and basal rates of oxygen consumption in mice. Genetics 159: 267277.
  • Falconer, D.S. & Mackay, T.F.C. 1996. Introduction to Quantitative Genetics, 4th edn. Longman Group Ltd, Harlow.
  • Furness, R.W. 2003. It's in the genes. Nature 425: 779780.
  • Garant, D. & Kruuk, L.E.B. 2005. How to use molecular marker data to measure evolutionary parameters in wild populations. Mol. Ecol. 14: 18431859.
  • Hansen, T.F. 1997. Stabilizing selection and comparative analyses of adaptation. Evolution 51: 13411351.
  • Hansen, T.F., Armbruster, W.S., Carlson, M.L. & Pélabon, C. 2003. Evolvability and genetic constraint in Dalechampia blossoms: genetic correlations and conditional evolvability. J. Exp. Zool. 296B: 2339.
  • Hayes, J.P. & O'Connor, C.S. 1999. Natural selection on thermogenic capacity of high- altitude deer mice. Evolution 53: 12801287.
  • Henderson, K.K., Wagner, H., Favret, F., Britton, S.L., Koch, L.G., Wagner, P.D. & Gonzalez, N.C. 2002. Determinants of maximal O2 uptake in rats selectively bred for endurance running capacity. J. Appl. Physiol. 93: 12651274.
  • Hõrak, P., Saks, L., Ots, I. & Kollist, H. 2002. Repeatability of condition indices in captive greenfinches (Carduelis chloris). Can. J. Zool. 80: 636643.
  • Houle, D. 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195204.
  • IUPS Thermal Commission 2001. Glossary of terms for physiology. Jpn. J. Physiol. 51: 245280.
  • Jensen, H., Sæther, B.E., Ringsby, T.H., Tufto, J., Griffith, S.C. & Ellegren, H. 2003. Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J. Evol. Biol. 16: 12961307.
  • Kalinowski, S.T., Taper, M.L. & Marshall, T.C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 10991106.
  • Konarzewski, M., Książek, A. & Łapo, I.B. 2005. Artificial selection on metabolic rates and related traits in rodents. Integr. Comp. Biol. 45: 416425.
  • Kruuk, L.E.B. 2004. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. Lond. B 359: 873890.
  • Książek, A., Konerzewski, M. & Łapo, I.B. 2004. Anatomic and energetic correlates of divergent selection for basal metabolic rate in laboratory mice. Physiol. Biochem. Zool. 77: 890899.
  • Lacy, R.C. & Lynch, C.B. 1979. Quantitative genetic analysis of temperature regulation in Mus musculus. I. Partitioning of variance. Genetics 91: 743753.
  • Lande, A. & Arnold, S.J. 1983. The measurement of selection on correlated characters. Evolution 17: 12101226.
  • Langseth, I., Moe, B., Fyhn, M., Gabrielsen, G.W. & Bech, C. 2000. Flexibility of basal metabolic rate in Artic breeding Kittiwakes (Rissa tridactyla). In: Life in the Cold (G. Heldmaier & M. Klingenspor, eds), pp. 471477. Springer Verlag, Berlin.
  • Lessells, C.M. & Boag, P.T. 1987. Unrepeatable repeatabilities: a common mistake. Auk 104: 116121.
  • Lindström, Å. & Klaassen, M. 2003. High basal metabolic rates of shorebirds while in the arctic: a circumpolar view. Condor 105: 420427.
  • Lindström, Å. & Rosen, M. 2002. The cost of avian winter stores: intra-individual variation in basal metabolic rate of a wintering passerine, the greenfinch Carduelis chloris. Avian Sci. 2: 139143.
  • Lovegrove, B.G. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J. Comp. Physiol. B 173: 87112.
  • Lynch, M. & Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Inc., Sunderland.
  • Marshall, T.C., Slate, J., Kruuk, L.E.B. & Pemberton, J.M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639655.
  • Merilä, J. & Sheldon, B.C. 2001. Avian quantitative genetics. In: Current Ornithology 16. (V. Nolan Jr & C. F. Thompson, eds), pp. 179225. Kluwer Academic/Plenum Publishers, New York.
  • Mundy, N.I. & Woodruff, D.S. 1996. Polymorphic microsatellite markers in the loggerhead shrike Lanius ludovicianus isolated from a library enriched for CA repeats. Mol. Ecol. 5: 811813.
  • Nespolo, R.F., Bacigalupe, L.D. & Bozinovic, F. 2003. Heritability of energetics in a wild mammal, the leaf-eared mouse (Phyllotis darwini). Evolution 57: 16791688.
  • Nespolo, R.F., Bustamine, D.M., Bacigalupe, L.D. & Bozinovic, F. 2005. Quantitative genetics of bioenergetics and growth-related traits in the wild mammal, Phyllotis darwini. Evolution 59: 18291837.
  • Neumaier, A. & Groeneveld, E. 1998. Restricted maximum likelihood estimation of covariances in sparse linear models. Genet. Select. Evol. 30: 326.
  • Price, T. & Langen, T. 1992. Evolution of correlated characters. Trend. Ecol. Evol. 7: 307310.
  • Primmer, C.R., Møller, A.P. & Ellegren, H. 1996. A wide-range survey of cross-species microsatellite amplification in birds. Mol. Ecol. 5: 365378.
    Direct Link:
  • Rønning, B., Moe, B. & Bech, C. 2005. Long-term repeatability makes basal metabolic rate a likely heritable trait in the zebra finch Taeniopygia guttata. J. Exp. Biol. 208: 46634669.
  • Raymond, M. & Rousset, F. 1995. genepop (version 1.2): population genetics software for exact test and ecumenicism. J. Heredity 86: 248249.
  • Richardson, D.S., Jury, F.L., Dawson, D.A., Salgueiro, P., Komdeur, J. & Burke, T. 2000. Fifty Seychelles warbler (Acrocephalus sechellensis) microsatellite loci polymorphic in Sylviidae species and their cross-species amplification in other passerine birds. Mol. Ecol. 9: 22262231.
  • Sadowska, E.T., Labocha, M.K., Baliga, K., Stanisz, A., Wróblewska, A.K., Jagusiak, W. & Koteja, P. 2005. Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy. Evolution 59: 672681.
  • Sefc, K.M., Payne, R.B. & Sorenson, M.D. 2001. Characterization of microsatellite loci in village indigobirds Vidua chalybeata and cross-species amplification in estrildid and ploceid finches. Mol. Ecol. Notes 1: 252254.
  • Selman, C., Korhonen, T.K., Bünger, L., Hill, W.G. & Speakman, J.R. 2001. Thermoregulatory responses of two mouse Mus musculus strains selectively bred for high and low food intake. J. Comp. Physiol. B 171: 661668.
  • Simons, A.M. & Roff, D.A. 1994. The effect of environmental variability on the heritabilities of traits of a field cricket. Evolution 48: 16371649.
  • Sorensen, D.A. & Kennedy, B.W. 1984. Estimation of genetic variances from unselected and selected populations. J. Anim. Sci. 59: 12131223.
  • Sorensen, D.A. & Kennedy, B.W. 1986. Analysis of selection experiments using mixed model methodology. J. Anim. Sci. 63: 245258.
  • Swallow, J.G., Garland, T. Jr, Carter, P.A., Zhan, W.Z. & Sieck, G.C. 1998. Effects of voluntary activity and genetic selection on aerobic capacity in house mice (Mus domesticus). J. Appl. Physiol. 84: 6976.
  • Vézina, F. & Williams, T.D. 2005. The metabolic cost of egg production is repeatable. J. Exp. Biol. 208: 25332538.
  • Weigensberg, I. & Roff, D.A. 1996. Natural heritabilities: can they be reliably estimated in the laboratory? Evolution 50: 21492157.
  • Wikelski, M., Spinney, L., Schelsky, W., Scheuerlein, A. & Gwinner, E. 2003. Slow pace of life in tropical sedentary birds: a common-garden experiment on four stonechat populations from different latitudes. Proc. R. Soc. Lond. B 270: 23832388.
  • Wisløff, U., Najjar, S.M., Ellingsen, Ø., Haram, P.M., Swoap, S., Al-Share, Q., Fernström, M., Rezaei, K., Lee, S.J., Koch, L.G. & Britton, S.L. 2005. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307: 418420.
  • Yodogawa, Y., Nishiumi, I., Saito, D. & Okanoya, K. 2003. Characterization of eight polymorphic microsatellite loci from the Bengalese finch (Lonchura striata var. domestica). Mol. Ecol. Notes 3: 183185.