• disassortative mating;
  • frequency-dependent reproduction;
  • legitimate pollination;
  • lungwort;
  • morph bias;
  • pollen limitation;
  • sexual polymorphism;
  • weak incompatibility


Theory predicts that morph ratios in heterostylous populations are governed by negative frequency-dependent selection typically resulting in equal morph ratios at equilibrium. Previous work on the distylous perennial herb Pulmonaria officinalis, however, showed asymmetric mating between floral morphs and a weak self-incompatibility system, with the long-styled morph (L-morph) producing significantly higher seed set following intramorph crosses and even selfing than the short-styled morph (S-morph), two aspects thought to affect female fecundity and morph-ratio variation. Here, we evaluated morph ratios and population size of all known P. officinalis populations in the northern part of Belgium. Morph ratios deviated significantly from 1 : 1 (range 0.09–1 L-morph frequency, mean = 0.58). Relative fecundity of the S-morph (i.e. mean seed set of the S-morph/mean seed set of the L-morph) was on average 0.73, was positively related to the frequency of the L-morph, and reached 1 (similar levels of female fecundity) at an average L-morph frequency of 0.66 in the population. As some small populations had the S-morph in majority, our results suggest that local morph ratios are influenced both by the relative fecundity of L- and S-morph individuals and by stochastic processes in small populations.