• animal model;
  • anti-predator vigilance;
  • heritability;
  • maximum running speed;
  • yellow-bellied marmot


Animals must allocate some proportion of their time to detecting predators. In birds and mammals, such anti-predator vigilance has been well studied, and we know that it may be influenced by a variety of intrinsic and extrinsic factors. Despite hundreds of studies focusing on vigilance and suggestions that there are individual differences in vigilance, there have been no prior studies examining its heritability in the field. Here, we present one of the first reports of (additive) genetic variation in vigilance. Using a restricted maximum likelihood procedure, we found that, in yellow-bellied marmots (Marmota flaviventris), the heritability of locomotor ability (h= 0.21), and especially vigilance (h2 = 0.08), is low. These modest heritability estimates suggest great environmental variation or a history of directional selection eliminating genetic variation in these traits. We also found a significant phenotypic (rP = −0.09 ± 0.04, = 0.024) and a substantial, but not significant, genetic correlation (rA = −0.57 ± 0.28, = 0.082) between the two traits (slower animals are less vigilant while foraging). We found no evidence of differential survival or longevity associated with particular phenotypes of either trait. The genetic correlation may persist because of environmental heterogeneity and genotype-by-environment interactions maintaining the correlation, or because there are two ways to solve the problem of foraging in exposed areas: be very vigilant and rely on early detection coupled with speed to escape, or reduce vigilance to minimize time spent in an exposed location. Both strategies seem to be equally successful, and this ‘locomotor ability-wariness’ syndrome may therefore allow slow animals to compensate behaviourally for their impaired locomotor ability.