SEARCH

SEARCH BY CITATION

Keywords:

  • endothermy;
  • genetic constraint;
  • genetic covariance;
  • genetic variance;
  • maximal metabolism;
  • metabolic rate;
  • resting metabolism

Abstract

The metabolic distinction between endotherms and ectotherms is profound. Whereas the ecology of metabolic rates is well studied, how endotherms evolved from their ectothermic ancestors remains unclear. The aerobic capacity model postulates that a genetic constraint between resting and maximal metabolism was essential for the evolution of endothermy. Using the multivariate breeders’ equation, I illustrate how the (i) relative sizes of genetic variances and (ii) relative magnitudes of selection gradients for resting and maximal metabolism affect the genetic correlation needed for endothermy to have evolved via a correlated response to selection. If genetic variances in existing populations are representative of ancestral conditions, then the aerobic capacity model is viable even if the genetic correlation was modest. The analyses reveal how contemporary data on selection and genetic architecture can be used to test hypotheses about the evolution of endothermy, and they show the benefits of explicitly linking physiology and quantitative genetic theory.