• Fst;
  • geometric morphometrics;
  • Glandulocaudinae;
  • local adaptation;
  • mate choice;
  • microsatellites;
  • Poecilia reticulata;
  • sensory drive;
  • sensory exploitation;
  • sexual selection;
  • speciation


Sensory drive, where the efficacy of a sexual signal depends on the environment in which it is employed, is a potential mechanism behind divergent evolution of secondary sexual traits. Male swordtail characins are equipped with a narrow and transparent extension of the gill cover with a flag-like structure at its tip. This opercular flag mimics a prey item and is employed by males as a ‘lure’ to attract the attention of females during mating attempts. We conducted a study of genetic and morphological differentiation across swordtail characin populations throughout their native range in Trinidad. The morphology of the opercular flag varied across populations and several aspects of this variation match the predicted hallmarks of sensory drive. First, morphological differentiation of the flag across populations was unrelated to genetic similarity at neutral genetic markers. Second, the shape of the flag covaried with those aspects of body shape that should reflect adaptation to different feeding regimes. Third, and most importantly, the shape of the flag covaried across populations with those environmental characteristics that should most closely reflect differences in local prey abundance. Overall, our results are consistent with a scenario where the evolution of this male sexual signal tracks food-related shifts in female sensory biases across populations, thus providing at least provisional support for a role for sensory drive in population differentiation.