SEARCH

SEARCH BY CITATION

Keywords:

  • evolution;
  • evolvability;
  • invasion;
  • range shifting

Abstract

A growing body of empirical evidence demonstrates that at an expanding front, there can be strong selection for greater dispersal propensity, whereas recent theory indicates that mutations occurring towards the front of a spatially expanding population can sometimes ‘surf’ to high frequency and spatial extent. Here, we consider the potential interplay between these two processes: what role may mutation surfing play in determining the course of dispersal evolution and how might dispersal evolution itself influence mutation surfing? Using an individual-based coupled-map lattice model, we first run simulations to determine the fate of dispersal mutants that occur at an expanding front. Our results highlight that mutants that have a slightly higher dispersal propensity than the wild type always have a higher survival probability than those mutants with a dispersal propensity lower than, or very similar to, the wild type. However, it is not always the case that mutants with very high dispersal propensity have the greatest survival probability. When dispersal mortality is high, mutants of intermediate dispersal survive most often. Interestingly, the rate of dispersal that ultimately evolves at an expanding front is often substantially higher than that which confers a novel mutant with the greatest probability of survival. Second, we run a model in which we allow dispersal to evolve over the course of a range expansion and ask how the fate of a neutral or nonneutral mutant depends upon when and where during the expansion it arises. These simulations highlight that the success of a neutral mutant depends upon the dispersal genotypes that it is associated with. An important consequence of this is that novel mutants that arise at the front of an expansion, and survive, typically end up being associated with more dispersive genotypes than the wild type. These results offer some new insights into causes and the consequences of dispersal evolution during range expansions, and the methodology we have employed can be readily extended to explore the evolutionary dynamics of other life history characteristics.