SEARCH

SEARCH BY CITATION

References

  • Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G. & Harmon, L.J. 2009a. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Nat. Acad. Sci. USA 106: 1341013414.
  • Alfaro, M.E., Brock, C.D., Banbury, B.L. & Wainwright, P.C. 2009b. Does evolutionary innovation in pharyngeal jaws lead to rapid lineage diversification in labrid fishes? BMC Evol. Biol. 9: 255.
  • Baldwin, B.G. & Sanderson, M.J. 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl Acad. Sci. USA 95: 94029406.
  • Barraclough, T.G., Vogler, A.P. & Harvey, P.H. 1998. Revealing the factors that promote speciation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353: 241249.
  • Burbrink, F.T. & Pyron, R.A. 2010. How does ecological opportunity influence rates of speciation, extinction and morphological diversification in New World ratsnakes (tribe Lampropeltini)? Evolution 64-4: 934943.
  • Donoghue, M.J. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 7793.
  • Drummond, A.J. & Rambaut, A. 2006. BEAST v1.4. Available from URL http://beast.bio.ed.ac.uk/.
  • Dunson, W.A. 1975. Adaptions of sea snakes. In: The Biology of Sea Snakes (W.Dunson, ed.), pp. 319. University Park Press, Baltimore.
  • Glodek, G.S. & Voris, H.K. 1982. Marine snake diets: prey composition, diversity and overlap. Copeia 1982: 661666.
  • Grant, P.R. & Grant, B.R. 2002. Adaptive radiation of Darwin’s finches. Am. Sci. 90: 130139.
  • Graur, D. & Martin, W. 2004. Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet. 20: 8086.
  • Greer, A. 1997. The Biology and Evolution of Australian Snakes. Surrey Beatty & Sons, Sydney.
  • Heatwole, H. 1999. Sea Snakes. University of New South Wales Press, Sydney.
  • Hughes, C. & Eastwood, R. 2006. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103: 1033410339.
  • Hutchinson, M.N. 1990. The generic classification of the Australian terrestrial elapid snakes. Mem. Queensl. Mus. 28: 397405.
  • Kelly, C.M.R., Barker, N.P., Villet, M.H. & Broadley, D.G. 2009. Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene. Cladistics 25: 3863.
  • Keogh, J.S., Shine, R. & Donnellan, S. 1998. Phylogenetic relationships of terrestrial Australo-Papuan elapid snakes (Subfamily Hydrophiinae) based on cytochrome b and 16S rRNA sequences. Mol. Phylogenet. Evol. 10: 6781.
  • Kharin, V.E. 2005. A check-list of sea snakes (Serpentes: Laticaudidae, Hydrophiidae) of the World oceans. Izv. TINRO 140: 7189 [in Russian].
  • Klak, C., Reeves, G. & Hedderson, T. 2003. Unmatched tempo of evolution in Southern African semi-desert ice plants. Nature 427: 6365.
  • Lillywhite, H.B., Sheey, C.M. & Zaidan, F. 2008. Pitviper scavenging at the intertidal zone: an evolutionary scenario for the invasion of the sea. Bioscience 58: 947955.
  • Lovette, I.J., Bermingham, E. & Ricklefs, R.E. 2002. Clade-specific morphological diversification and adaptive radiation in Hawaiian songbirds. Proc. Biol. Sci. 269: 3742.
  • Lukoschek, V. & Keogh, J.S. 2006. Molecular phylogeny of sea snakes reveals a rapidly diverged adaptive radiation. Biol. J. Linn. Soc. 89: 523539.
  • Lukoschek, V., Waycott, M. & Marsh, H. 2007. Phylogeography of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates Pleistocene range expression around northern Australia but low contemporary gene flow. Mol. Ecol. 16: 34063422.
  • Lynch, V.J. 2009. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution 63: 24572465.
  • Maddison, D.R. & Maddison, W.P. 2005. MacClade. Sinauer Associates, Sunderland.
  • Magallón, S. & Sanderson, M.J. 2001. Absolute diversification rates in angiosperm clades. Evolution 55: 17621780.
  • McDowell, S.B. 1969. Notes on the Australian sea-snake Ephalophis greyi M. Smith (Serpentes: Elapidae, Hydrophiinae) and the origin and classification of sea snakes. Zool. J. Linn. Soc. 48: 333349.
  • McDowell, S.B. 1972. The genera of sea snakes of the Hydrophis group (Serpentes, Elapidae). Trans. Zool. Soc. London 32: 195247.
  • Meyer, A. 1993. Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends Ecol. Evol. 8: 279284.
  • Minton, S.A. & Da Costa, M.S. 1975. Serological relationships of sea snakes and their evolutionary implication. In: The Biology of Sea Snakes (W.Dunson, ed.), pp. 3355. University Park Press, Baltimore.
  • Moore, B.R. & Donoghue, M.J. 2007. Correlates of diversification in the plant clade dipsacales: geographic movement and evolutionary innovations. Am. Nat. 170: S28S55.
  • Moyle, R.G., Filardi, C.E., Smith, C.E. & Diamond, J. 2009. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc. Natl Acad. Sci. USA 106: 18631868.
  • Phillimore, A.B. & Price, T.D. 2008. Density dependent cladogenesis in birds. PLoS Biol. 6: e71 (DOI: 10.1371/journal.pbio.0060071).
  • Rabosky, D.L. 2006. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates. Evol. Bioinform. Online 2: 257260.
  • Rabosky, D.L. 2009. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12: 735743.
  • Rabosky, D.L. & Lovette, I.J. 2008. Density dependent diversification in North American wood warblers. Proc. Biol. Sci. 275: 23632371.
  • Rabosky, D.L., Donnellan, S.C., Talaba, A.L. & Lovette, I.J. 2007. Exceptional among-lineage variation in diversification rates during the radiation of Australia’s most diverse vertebrate clade. Proc. Biol. Sci. 274: 29152923.
  • Rasmussen, A.R. 1993. The Status of the Persian Gulf Sea Snake Hydrophis lapemoides (Gray, 1849) (Serpentes, Hydrophiidae), Bull. Nat. Hist. Mus. London (Zool.) 59: 97105.
  • Rasmussen, A.R. 1997. Systematics of the sea snakes: a critical review. Symp. Zool. Soc. London 70: 1530.
  • Rasmussen, A.R. 2002. Phylogenetic analysis of the “true” aquatic elapid snakes Hydrophiinae (sensu Smith et al., 1977) indicates two independent radiations into water. Steenstrupia 27: 4763.
  • Ricklefs, R.E. 2007. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22: 601610.
  • Ricklefs, R.E., Losos, J.B. & Townsend, T.M. 2007. Evolutionary diversification of clades of squamate reptiles. J. Evol. Biol. 20: 17511762.
  • Rosenzweig, M.L. 1995. Species Diversity in Space and Time. Cambridge University Press, Cambridge.
  • Sanders, K.L. & Lee, M.S.Y. 2008. Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes. Mol. Phylogenet. Evol. 46: 11651173.
  • Sanders, K.L., Lee, M.S.Y., Leys, R., Foster, R. & Keogh, J.S. 2008. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J. Evol. Biol. 21: 682695.
  • Santos, J.C., Coloma, L.A., Summers, K., Caldwell, J.P., Richard Ree, R. & Cannatella, D.C. 2009. Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 7: e1000056.
  • Scanlon, J.D. & Lee, M.S.Y. 2004. Phylogeny of Australasian venomous snakes (Colubroidea, Elapidae, Hydrophiinae) based on phenotypic and molecular evidence. Zool. Scr. 33: 335366.
  • Schluter, D. 2000. The ecology of Adaptive Radiation. Oxford University Press, Oxford.
  • Seehausen, O. 2006. African cichlid fish: a model system in adaptive radiation research. Proc. Biol. Sci. 273: 19871998.
  • Skinner, A., Donnellan, S.C., Hutchinson, M.N. & Hutchinson, R.G. 2005. A phylogenetic analysis of Pseudonaja (Hydrophiinae, Elapidae, Serpentes) based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 37: 558571.
  • Slater, G.J., Price, S.A., Santini, F. & Alfaro, M.E. 2010. Diversity versus disparity and the radiation of modern cetaceans. Proc. Biol. Sci. 277: 30973104.
  • Smith, M. 1926. Monograph of the sea snakes (Hydrophiidae). Taylor & Francis, London.
  • Steeman, M.E., Hebsgaard, M.B., Fordyce, R.E., Ho, S.Y.W., Rabosky, D.L., Nielsen, R., Rahbek, C., Glenner, H., Martin, V., Sørensen, M.V. & Willerslev, E. 2009. Radiation of Extant Cetaceans Driven by Restructuring of the Oceans. Syst. Biol. 58: 573585.
  • Voris, H.K. 1972. The role of sea snakes (Hydrophiidae) in the trophic structure of coastal ocean communities. J. Mar. Biol. Assoc. India 14: 429442.
  • Voris, H.K. 1977. A phylogeny of the sea snakes (Hydrophiidae). Fieldiana, Zool. 70: 79169.
  • Voris, H.K. & Voris, H.H. 1983. Feeding strategies in marine snakes: an analysis of evolutionary, morphological, behavioural and ecological relationships. Am. Zool. 23: 411425.
  • Wiens, J.J., Engstrom, T.N. & Chippendale, P.T. 2006. Rapid diversification, incomplete isolation, and the ‘‘speciation clock’’ in North American salamanders (genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60: 25852603.
  • Wüster, W., Crookes, S., Ineich, I., Mane, Y., Pook, C.E., Trape, J.-F. & Broadley, D.G. 2007. The phylogeny of cobras inferred from mitochondrial DNA sequences: evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol. Phylogenet. Evol. 45: 437453.
  • Zwickl, D.J. & Hillis, D.M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Syst. Biol. 51: 588598.