SEARCH

SEARCH BY CITATION

References

  • Cover, T.M. & Thomas, J.A. 2006. Elements of Information Theory, 2nd edn. Wiley, Hoboken, NJ.
  • Embrechts, P., Kluppelberg, C. & Mikosch, T. 1997. Modeling Extremal Events: For Insurance and Finance. Springer Verlag, Heidelberg.
  • Frank, S.A. 2009. The common patterns of nature. J. Evol. Biol. 22: 15631585.
  • Frank, S.A. & Smith, D.E. 2010. Measurement invariance, entropy, and probability. Entropy 12: 289303.
  • Hand, D. 2004. Measurement Theory and Practice. Arnold, London.
  • Jaynes, E.T. 1957a. Information theory and statistical mechanics. Phys. Rev. 106: 620630.
  • Jaynes, E.T. 1957b. Information theory and statistical mechanics II. Phys. Rev. 108: 171190.
  • Jaynes, E.T. 1968. Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4: 227241.
  • Jaynes, E.T. 2003. Probability Theory: The Logic of Science. Cambridge University Press, New York.
  • Jeffreys, H. 1957. Scientific Inference, 2nd edn. Cambridge University Press, London.
  • Johnson, N.L., Kotz, S. & Balakrishnan, N. 1994. Continuous Univariate Distributions, 2nd edn, Vol. 1. Wiley, New York.
  • Johnson, N.L., Kotz, S. & Balakrishnan, N. 1995. Continuous Univariate Distributions, 2nd edn, Vol. 2. Wiley, New York.
  • Kleiber, C. & Kotz, S. 2003. Statistical Size Distributions in Economics and Actuarial Sciences. Wiley, New York.
  • Kotz, S. & Nadarajah, S. 2000. Extreme Value Distributions: Theory and Applications. World Scientific, Singapore.
  • Luce, R.D. & Narens, L. 2008. Measurement, theory of. In: The New Palgrave Dictionary of Economics (S.N.Durlauf & L.E.Blume, eds) Palgrave Macmillan, Basingstoke. Available from: http://www.dictionaryofeconomics.com/extract?id=pde2008_M000128.
  • Mahan, G.D. 2000. Many Particle Physics, 3rd edn. Springer, New York.
  • Morris, C.N. 1982. Natural exponential families with quadratic variance functions. Ann. Stat. 10: 6580.
  • Morris, C.N. 1983. Natural exponential families with quadratic variance functions: statistical theory. Ann. Stat. 11: 515529.
  • Morris, C.N. & Lock, K.F. 2009. Unifying the named natural exponential families and their relatives. Am. Stat. 63: 247253.
  • Narens, L. & Luce, R.D. 2008. Meaningfulness and invariance. In: The New Palgrave Dictionary of Economics (S.N.Durlauf & L.E.Blume, eds), Palgrave Macmillan, Basingstoke. Available from: http://www.dictionaryofeconomics.com/extract?id=pde2008_M000121.
  • Sato, K. 2001. Basic results on Lévy processes. In: Lévy Processes: Theory and Applications (O.E.Barndorff-Nielsen, T.Mikosch & S.I.Resnick, eds), pp. 337. Birkäuser, Boston.
  • Seidenfeld, T. 1979. Why I am not an objective Bayesian: some reflections prompted by Rosenkrantz. Theory Decis. 11: 413440.
  • Touchette, H. 2009. The large deviation approach to statistical mechanics. Phys. Rep. 478: 169.
  • Weyl, H. 1952. Symmetry. Princeton University Press, Princeton.