SEARCH

SEARCH BY CITATION

References

  • Adkison, M.D. 1995. Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment? Can. J. Fish. Aquat. Sci. 52: 27622777.
  • Aykanat, T., Thrower, F.P. & Heath, D.D. 2011. Rapid evolution of osmoregulatory function by modification of gene transcription in steelhead trout. Genetica 139: 233242.
  • Bates, D.M. 2010. lme4: mixed-effect modeling with R. URL: http://lme4.r-forge.r-project.org/book/
  • Bates, D.M., Maechler, M. & Bolker, B. 2009. lme4: linear mixed-effects models using S4 classes. R package version 0.999375–31. URL http://CRAN.R-project.org/package=lme4
  • Bryden, C.A. & Heath, D.D. 2000. Heritability of fluctuating asymmetry for multiple traits in Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 57: 21862192.
  • Bryden, C.A., Heath, J.W. & Heath, D.D. 2004. Performance and heterosis in farmed and wild Chinook salmon (Oncorhynchus tshawyacha) hybrid and purebred crosses. Aquaculture 235: 249261.
  • Cheverud, J.M. & Moore, A.J. 1994. Quantitative genetics and the role of environment provided by relatives in behavioral evolution. In: Quantitative Genetics Studies of Behavioral Evolution (C.R.B. Boake, ed.), pp. 67100. The University of Chicago Press, Chicago.
  • Clarke, G.M. 1995. Relationships between developmental stability and fitness – application for conservation biology. Conserv. Biol. 9: 1824.
  • Fraser, D.J., Weir, L.K., Bernatchez, L., Hansen, M.M. & Taylor, E.B. 2011. Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106: 404420.
  • Gallardo, J.A., Lhorente, J.P. & Neira, R. 2010. The consequences of including non-additive effects on the genetic evaluation of harvest body weight in Coho salmon (Oncorhynchus kisutch). Genet. Sel. Evol. 42: 19.
  • Garcia de Leaniz, C., Fleming, I.A., Einum, S., Verspoor, E., Jordan, W.C., Consuegra, S. et al. 2007. A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol. Rev. 82: 173211.
  • Gilk, S.E., Wang, I.A., Hoover, C.L., Smoker, W.W., Taylor, S.G., Gray, A.K. et al. 2004. Outbreeding depression in hybrids between spatially separated pink salmon, Oncorhynchus gorbuscha, populations: marine survival, homing ability, and variability in family size. Environ. Biol. Fishes 69: 287297.
  • Heath, D.D. & Blouw, D.M. 1998. Maternal effects in fish: are they adaptive or merely physiological side effects? In: Adaptive Maternal Effects (T.A. Mousseau & C.W. Fox, eds), pp. 178201. Oxford University Press, Oxford.
  • Heath, D.D., Heath, J.W., Bryden, C.A., Johnson, R.M. & Fox, C.W. 2003. Rapid evolution of egg size in captive salmon. Science, 299: 17381740.
  • Heath, D.D., Fox, C.W. & Heath, J.W. 1999. Maternal effects on offspring size: variation through early development of chinook salmon. Evolution 53: 16051611.
  • Houde, A.L.S., Fraser, D.J., O’Reilly, P. & Hutchings, J.A. 2011. Maternal and paternal effects on fitness correlates in outbred and inbred Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 68: 534549.
  • Jensen, L.F., Hansen, M.M., Pertoldi, C., Holdensgaard, G., Mensberg, K.L.D. & Loeschcke, V. 2008. Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proc. Biol. Sci. 275: 28592868.
  • Jonsson, B., Forseth, T., Jensen, A.J.J. & Naesje, T.F. 2007. Thermal performance of juvenile Atlantic Salmon, Salmo salar L. Func. Ecol. 15: 701711.
  • Kavanagh, K.D., Haugen, T.O., Gregersen, F., Jernvall, J. & Vøllestad, L.A. 2010. Contemporary temperature-driven divergence in a Nordic freshwater fish under conditions commonly thought to hinder adaptation. BMC Evol. Biol. 10: 350.
  • Kawecki, T.J. & Ebert, D. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7: 12251241.
  • Kreeger, K.Y. 1995. Differences in the onset of salinity tolerance between juvenile Chinook salmon from two coastal Oregon River systems. Can. J. Fish. Aquat. Sci. 52: 623630.
  • Leonard, J.B.K. & McCormick, S.D. 2001. Metabolic enzyme activity during smolting in stream- and hatchery-reared Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 58: 15851593.
  • Meyer, K. 2007. WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). J. Zhejiang Univ. Sci. B 8: 815821.
  • Mousseau, T.A. 2000. Intra- and interpopulation genetic variation: explaining the past and predicting the future. In: Adaptive Genetic Variation in the Wild. (T.A. Mousseau, B. Sinervo & J. Endler, eds), pp. 219250. Oxford University Press, Oxford.
  • Mousseau, T.A. & Fox, C.W. 1998. The adaptive significance of maternal effects. Trends Ecol. Evol. 13: 403407.
  • Pante, M.J.R., Gjerde, B., McMillan, I. & Misztal, I. 2002. Estimation of additive and dominance genetic variances for body weight at harvest in rainbow trout, Oncorhynchus mykiss. Aquaculture 204: 383392.
  • Perry, G.M.L., Audet, C. & Bernatchez, L. 2005. Maternal genetic effects on adaptive divergence between anadromous and resident brook charr during early life history. J. Evol. Biol. 18: 13481361.
  • Pitcher, T.E. & Neff, B.D. 2006. MHC class IIB alleles contribute to both additive and nonadditive genetic effects on survival in Chinook salmon. Mol. Ecol. 15: 23572365.
  • Rasanen, K. & Kruuk, L.E.B. 2007. Maternal effects and evolution at ecological time-scales. Func. Ecol. 21: 408421.
  • R Development Core Team. 2009. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org .
  • Richards, E.J. 2006. Opinion – inherited epigenetic variation – revisiting soft inheritance. Nat. Rev. Genet. 7: 395401.
  • Riddell, B.E., Leggett, W.C. & Saunders, R.L. 1981. Evidence of adaptive polygenic variation between two populations of Atlantic salmon (Salmo salar) native to tributaries of the SW Miramichi river, NB. Can. J. Fish. Aquat. Sci. 38: 321333.
  • Riska, B. 1989. Composite traits, selection response, and evolution. Evolution 43: 11721191.
  • Roberge, C., Normandeau, E., Einum, S., Guderley, H. & Bernatchez, L. 2008. Genetic consequences of interbreeding between farmed and wild Atlantic salmon: insights from the transcriptome. Mol. Ecol. 17: 314324.
  • Roff, D. 1997. Evolutionary Quantitative Genetics. Chapmann Hall, New York.
  • Rye, M. & Mao, I.L. 1998. Nonadditive genetic effects and inbreeding depression for body weight in Atlantic salmon (Salmo salar L.). Livest. Prod. Sci. 57: 1522.
  • Stewart, D.C., Smith, G.W. & Youngson, A.F. 2002. Tributary-specific variation in timing of return of adult Atlantic salmon (Salmo salar) to fresh water has a genetic component. Can. J. Fish. Aquat. Sci. 59: 276281.
  • Taylor, E.B. 1991. A Review of local adaptation in salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98: 185207.
  • Unwin, M.J., Kinnison, M.T., Boustead, N.C. & Quinn, T.P. 2003. Genetic control over survival in Pacific salmon (Oncorhynchus spp.): experimental evidence between and within populations of New Zealand chinook salmon (O. tshawytscha). Can. J. Fish. Aquat. Sci. 60: 111.
  • Valdimarsson, S.K., Metcalfe, N.B. & Skulason, S. 2000. Experimental demonstration of differences in sheltering behaviour between Icelandic populations of Atlantic salmon (Salmo salar) and Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 57: 719724.
  • Vazquez, A.I., Bates, D.M., Rosa, G.J.M., Gianola, D. & Weigel, K.A. 2010. Technical note: an R package for fitting generalized linear mixed models in animal breeding. J. Anim. Sci. 88: 497504.
  • Wilson, A.J., Coltman, D.W., Pemberton, J.M., Overall, A.D.J., Byrne, K.A. & Kruuk, L.E.B. 2005. Maternal genetic effects set the potential for evolution in a free-living vertebrate population. J. Evol. Biol. 18: 405414.
  • Wilson, A.J., Reale, D., Clements, M.N., Morrissey, M.M., Postma, E., Walling, C.A. et al. 2009. An ecologist’s guide to the animal model. J. Anim. Ecol., 79: 1326.
  • Wolf, J.B., Brodie, E.D., Cheverud, J.M., Moore, A.J. & Wade, M.J. 1998. Evolutionary consequences of indirect genetic effects. Trends Ecol. Evol. 13: 6469.