SEARCH

SEARCH BY CITATION

References

  • Ajar, E. 2003. Analysis of disruptive selection in subdivided populations. BMC Evol. Biol. 3: 22.
  • Barton, N.H., Briggs, D., Eisen, J.A. Goldstein, D.B. & Patel, N.H., 2007. Evolution. Cold Spring Harbor Laboratory Press, New York.
  • Binmore, K., Samuelson, L. & Vaughan, R., 1995. Musical chairs: modeling noisy evolution. Games Econ. Behav. 11: 135.
  • Bulmer, M., 1994. Theoretical Evolutionary Ecology. Sinauer Associates, MA.
  • Bürger, R. 2000. The Mathematical Theory of Selection, Recombination, and Mutation. John Wiley and Sons, New York.
  • Bürger, R. & Lande, R. 1994. On the distribution of the mean and variance of a quantitative trait under mutation-selection-drift balance. Genetics 138: 901912.
  • Bürger, R., Wagner, G.P. & Stettinger, F., 1989. How much heritable variation can be maintained in finite populations by mutation-selection balance? Evolution 43: 17481766.
  • Caswell, H. 2000. Matrix Population Models. Sinauer Associates, MA.
  • Champagnat, N. & Lambert, A. 2007. Evolution of discrete populations and the canonical diffusion of adaptive dynamics. Ann. Appl. Probab. 17: 102155.
  • Champagnat, N., Ferrière, R. & Méléard, S., 2006. Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69: 297321.
  • Charlesworth, B. 1980. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge.
  • Christiansen, F.B. 1991. On conditions for evolutionary stability for a continuously varying character. Am. Nat. 138: 3750.
  • Demetrius, L. & Ziehe, M. 2007. Darwinian fitness. Theor. Popul. Biol. 72: 323345.
  • Dercole, F. & Rinaldi, S. 2008. Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications. Princeton University Press, Princeton, NJ.
  • Dieckmann, U. & Law, R. 1996. The dynamical theory of coevolution: A derivation from stochastic ecological processes from stochastic ecological processes. J. Math. Biol. 34: 579612.
  • Eshel, I. 1983. Evolutionary and continuous stability. J. Theor. Biol. 103: 99111.
  • Eshel, I. 1996. On the changing concept of evolutionary population stability as a reflection of a changing point of view in the quantitative theory of evolution. J. Math. Biol. 34: 485510.
  • Eshel, I., Feldman, M. & Bergman, A. 1998. Long-term evolution, short-term evolution, and population genetic theory. J. Theor. Biol. 191: 391396.
  • Ewens, W.J. 2004. Mathematical Population Genetics. Springer-Verlag, New York.
  • Ferrière, R., Bronstein, J.L., Rinaldi, S., Law, R. & Gauduchon, M. 2002. Cheating and the evolutionary stability of mutualisms. Proc. Biol. Sci. 269: 773780.
  • Foster, D. & Young, H.P. 1990. Stochastic evolutionary game dynamics. Theor. Popul. Biol. 38: 219232.
  • Frank, S.A. 1998. Foundations of Social Evolution. Princeton University Press, Princeton, NJ.
  • Gardiner, C.W. 2009. Stochastic Methods, 4th edn. Springer-Verlag, Berlin.
  • Geritz, S.A.H., Kisdi, E., Meszéna, G. & Metz, J.A.J. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12: 3557.
  • Gillespie, J.H. 1983. A simple stochastic gene substitution model. Theor. Popul. Biol. 23: 202215.
  • Gillespie, J.H. 1991. The Causes of Molecular Evolution. Oxford University Press, Oxford.
  • Gillespie, J.H. 2004. Population Genetics: A Concise Guide. Johns Hopkins, Baltimore & London.
  • Grimmett, G. & Stirzaker, D. 2001. Probability and Random Processes. Oxford University Press, Oxford.
  • Hamilton, W.D. 1964. The genetical evolution of social behaviour, 1. J. Theor. Biol. 7: 116.
  • Hammerstein, P. 1996. Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34: 511532.
  • Hartl, D. & Clark, A.G. 2007. Principles of Population Genetics, 4th edn. Sinauer, MA.
  • Hofbauer, J. & Sigmund, K. 1998. Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge.
  • Kandori, M., Mailath, G. & Rob, R. 1993. Learning, mutation, and long run equilibria in games. Econometrica 61: 2956.
  • Karlin, S. 1968. Equilibrium behavior of population genetic models with non-random mating: part ii: pedigrees, homozygosity and stochastic models. J. Appl. Probab. 5: 487566.
  • Karlin, S. & Taylor, H.M. 1975. A First Course in Stochastic Processes. Academic Press, San Diego.
  • Karlin, S. & Taylor, H.M. 1981. A Second Course in Stochastic Processes. Academic Press, San Diego.
  • Kimura, M. 1964. Diffusion models in population genetics. J. Appl. Probab. 1: 177232.
  • Kimura, M. 1965. A stochastic model concerning the maintenance of genetic variability in quantitative character. Proc. Natl. Acad. Sci. U.S.A. 54: 731736.
  • Kimura, M. 1971. Theoretical foundation of population genetics at the molecular level. Theor. Popul. Biol. 2: 174208.
  • Kimura, M. & Crow, J.F. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725738.
  • Lande, R. 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30: 314334.
  • Lehmann, L. and Rousset, F. 2010. How life-history and demography promote or inhibit the evolution of helping behaviors. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365: 25992617.
  • Leimar, O. 2009. Multidimensional convergence stability. Evol. Ecol. Res. 11: 191208.
  • Leturque, H. & Rousset, F. 2002. Dispersal, kin competition, and the ideal free distribution in a spatially heterogeneous population. Theor. Popul. Biol. 62: 169180.
  • Lion, S. & Gandon, S. 2009. Habitat saturation and the spatial evolutionary ecology of altruism. J. Evol. Biol. 22: 14871502.
  • Malécot, G. 1975. Heterozygosity and relationship in regularly subdivided populations. Theor. Popul. Biol. 8: 212241.
  • Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.
  • Meyn, S. and Tweedie, R.L. 2009. Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge.
  • Ohtsuki, H. & Iwasa, Y. 2004. How should we define goodness? reputation dynamics in indirect reciprocity. J. Theor. Biol. 231: 107120.
  • Orr, H.A. 1998. The population genetics of adaptation: the distribution of factors fixed during adaptive. Evolution 52: 935949.
  • Parker, G.A. & Maynard Smith, J. 1990. Optimality theory in evolutionary biology. Science 349: 2733.
  • Pen, I. 2000. Reproductive effort in viscous populations. Evolution 54: 293297.
  • Pollak, E. 1982. The rate of mutant substitution in populations with overlapping generations. Genet Res. 40: 8994.
  • Rousset, F. 2002. Inbreeding and relatedness coefficients: what do they measure? Heredity 88: 371380.
  • Rousset, F. 2003. A minimal derivation of convergence stability measures. J. Theor. Biol. 221: 665668.
  • Rousset, F. 2004. Genetic Structure and Selection in Subdivided Populations. Princeton University Press, Princeton, NJ.
  • Rousset, F. 2006. Separation of time scales, fixation probabilities and convergence to evolutionarily stable states under isolation by distance. Theor. Popul. Biol. 69: 165179.
  • Rousset, F. & Billiard, S. 2000. A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J. Evol. Biol. 13: 814825.
  • Rousset, F. & Ronce, O. 2004. Inclusive fitness for traits affecting metapopulation demography. Theor. Popul. Biol. 65: 127141.
  • Roze, D. & Rousset, F. 2003. Selection and drift in subdivided populations: a straightforward method for deriving diffusion approximations and applications involving dominance, selfing and local extinctions. Genetics 165: 21532166.
  • Schaffer, M.E. 1988. Evolutionarily stable strategies for a finite population and a variable contest size. J. Theor. Biol. 132: 469478.
  • Sella, G. & Hirsh, A.E. 2005. The application of statistical physics to evolutionary biology. Proc. Natl. Acad. Sci. USA. 102: 95419546.
  • Taylor, P. 1988. Inclusive fitness models with two sexes. Theor. Popul. Biol. 34: 145168.
  • Taylor, P.D. 1989. Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36: 125143.
  • Taylor, P. 1990. Allele-frequency change in a class-structured population. Am. Nat. 135: 95106.
  • Taylor, P.D. & Frank, S.A. 1996. How to make a kin selection model. J. Theor. Biol. 180: 2737.
  • Taylor, P.D., Day, T. & Wild, G. 2007a. Evolution of cooperation in a finite homogeneous graph. Nature 447: 469472.
  • Taylor, P.D., Day, T. & Wild, G. 2007b. From inclusive fitness to fixation probability in homogeneous structured populations. J. Theor. Biol. 249: 101110.
  • Vincent, T.L. & Brown, J.S. 2005. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics. Cambridge University Press, Cambridge.
  • Waxman, D. & Gavrilets, S. 2005. 20 questions on adaptive dynamics. J. Evol. Biol. 18: 11391154.
  • Wenseleers, T., Gardner, A. & Foster, K.R. 2010. Social evolution theory: a review of methods and approaches. In: Social Behaviour: Genes, Ecology and Evolution (T. Szekely, A. Moore & J. Komdeur, eds), pp. 132158. Cambridge University Press, Cambridge.
  • Wild, G. & Taylor, P. 2004. Fitness and evolutionary stability in game theoretic models of finite populations. Proc. Biol. Sci. 271: 23452349.
  • Wolfram, S. 2003. Mathematica, 5th edn. Cambridge University Press, Cambridge.
  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97159.
  • Zu, J., Mimura, M. & Wakano, J.Y. 2010. The evolution of phenotypic traits in a predator–prey system subject to allee effect. J. Theor. Biol. 262: 528543.