SEARCH

SEARCH BY CITATION

Keywords:

  • artificial selection;
  • constraints;
  • guppy;
  • morphology;
  • realized heritability;
  • scaling;
  • static allometry

Abstract

To what extent within-species (static) allometries constitute a constraint on evolution is the subject of a long-standing debate in evolutionary biology. A prerequisite for the constraint hypothesis is that static allometries are hard to change. Several studies have attempted to test this hypothesis with artificial-selection experiments, but their results remain inconclusive due to various methodological issues. Here, we present results from an experiment in which we selected independently on the slope and the elevation of the allometric relationship between caudal-fin size and body size in male guppies (Poecilia reticulata). After three episodes of selection, the allometric elevation (i.e. intercept at constant slope) had diverged markedly between the lines selected to increase or decrease it, and showed a realized heritability of 50%. In contrast, the allometric slope remained unaffected by selection. These results suggest that the allometric elevation is more evolvable than the allometric slope, this latter representing a potential constraint on adaptive trait evolution. To our knowledge, this study is the first artificial-selection experiment that directly tests the evolvability of static allometric slopes.