SEARCH

SEARCH BY CITATION

References

  • Baggott, G.K. & Graeme-Cook, K. 2002. Microbiology of natural incubation. In: Avian Incubation Behaviour, Environment and Evolution (D.C. Deeming, ed.), pp. 179191. Oxford University Press, Oxford.
  • Bandyopadhyay, A. & Bahttacharyya, S.P. 1996. Influence of fowl uropygial gland and its secretory lipid components on growth of skin surface bacteria of fowl. Indian J. Exp. Biol. 37: 12181222.
  • Blanco, G., Tella, J.L. & Potti, J. 1997. Feather mites on group-living Red-billed Choughs: a non-parasitic interaction? J. Avian Biol. 28: 197206.
  • Blanco, G., Tella, J.L., Potti, J. & Baz, A. 2001. Feather mites on birds: costs of parasitism or conditional outcomes? J. Avian Biol. 32: 271274.
  • Brown, C.R., Brazeal, K.R., Strickler, S.A. & Brown, M.B. 2006. Feather mites are positively associated with daily survival in cliff swallows. Can. J. Zool. 84: 13071314.
  • Bruce, J. & Drysdale, E.M. 1994. Trans-shell transmission. In: Microbiology of Avian Eggs (R.G. Board & R. Fuller, eds), pp. 6391. Chapman & Hall, London.
  • Burtt, E.H. & Ichida, J.M. 2004. Gloger’s rule, feather-degrading bacteria, and color variation among song sparrows. Condor 106: 681686.
  • Cook, M.I., Beissinger, S.R., Toranzos, G.A., Rodriguez, R.A. & Arendt, W.J. 2003. Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proc. R. Soc. Lond. B 270: 22332240.
  • Cook, M.I., Beissinger, S.R., Toranzos, G.A. & Arendt, W.J. 2005a. Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecol. Lett. 8: 532537.
  • Cook, M.I., Beissinger, S.R., Toranzos, G.A., Rodriguez, R.A. & Arendt, W.J. 2005b. Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behav. Ecol. 16: 3036.
  • Cramp, S. 1998. Cramp’s the Complete Birds of the Western Palearctic. Optimedia, Oxford University Press, Oxford.
  • Dabert, J. & Mironov, S.V. 1999. Origin and evolution of feather mites (Astigmata). Exp. Appl. Acarol. 23: 437454.
  • Franz, C.M.A.P., Holzapfel, W.H. & Stiles, M.E. 1999. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 47: 124.
  • Freckleton, R.P., Harvey, P.H. & Pagel, M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160: 712726.
  • Galvan, I. & Sanz, J.J. 2006. Feather mite abundance increases with uropygial gland size and plumage yellowness in Great Tits Parus major. Ibis 148: 687697.
  • Galván, I., Barba, E., Piculo, R., Canto, J.L., Cortes, V., Monrós, J.S. et al. 2008. Feather mites and birds: an interaction mediated by uropygial gland size? J. Evol. Biol. 21: 133144.
  • Garamszegi, L.Z. & Møller, A.P. 2007. Prevalence of avian influenza and host ecology. Proc. R. Soc. Lond. B 274: 20032012.
  • Garamszegi, L.Z. & Møller, A.P. 2010. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 4: 797805.
  • Godard, R.D., Morgan Wilson, C., Frick, J.W., Siegel, P.B. & Bowers, B.B. 2007. The effects of exposure and microbes on hatchability of eggs in open-cup and cavity nests. J. Avian Biol. 38: 709716.
  • Harvey, P.H. & Pagel, M.D. 1991. The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.
  • Houston, C.S., Saunders, J.R. & Crawford, R.D. 1997. Aerobic bacterial flora of addled raptor eggs in Saskatchewan. J. Wildl. Dis. 33: 328331.
  • Jacob, J. & Ziswiler, V. 1982. The uropygial gland. In: Avian Biology (D.S. Farner, J.R. King & K.C. Parkes, eds), pp. 359362. Academic Press, London.
  • Jovani, R. & Blanco, G. 2000. Resemblance within flocks and individual differences in feather mite abundance on long-tailed tits, Aegithalos caudatus (L.). Ecoscience 7: 428432.
  • Krieg, N.R. & Holt, J.G. 1984. Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, MD.
  • Lauber, C.L., Zhou, N., Gordon, J.I., Knight, R. & Fierer, N. 2010. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307: 8086.
  • Martinez-de La Puente, J., Rivero-De Aguilar, J., Del Cerro, S., Argueello, A. & Merino, S. 2011. Do secretions from the uropygial gland of birds attract biting midges and black flies? Parasitol. Res. 109: 17151718.
  • Martins, E.P. & Hansen, T.F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149: 646667.
  • Martín-Vivaldi, M., Ruiz-Rodríguez, M., Mendez, M. & Soler, J.J. 2006. Relative importance of factors affecting nestling immune response differs between junior and senior nestlings within broods of hoopoes Upupa epops. J. Avian Biol. 37: 467476.
  • Martín-Vivaldi, M., Ruiz-Rodriguez, M., Soler, J.J., Peralta-Sanchez, J.M., Mendez, M., Valdivia, E. et al. 2009. Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: evidence for a role of bacteria. J. Avian Biol. 40: 191205.
  • Martín-Vivaldi, M., Peña, A., Peralta-Sánchez, J.M., Sánchez, L., Ananou, S., Ruiz-Rodríguez, M. et al. 2010. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc. R. Soc. Lond. B 277: 123130.
  • Møller, A.P. 1987. Egg predation as a selective factor for nest design: an experiment. Oikos 50: 9194.
  • Møller, A.P. & Erritzøe, J. 1996. Parasite virulence and host immune defense: host immune response is related to nest reuse in birds. Evolution 50: 20662072.
  • Møller, A.P. & Erritzøe, J. 1998. Host immune defence and migration in birds. Evol. Ecol. 12: 945953.
  • Møller, A.P., Christe, P., Erritzøe, J. & Mavarez, J. 1998. Condition, disease and immune defence. Oikos 83: 301306.
  • Møller, A.P., Czirjak, G.A. & Heeb, P. 2009. Feather micro-organisms and uropygial antimicrobial defences in a colonial passerine bird. Funct. Ecol. 23: 10971102.
  • Møller, A.P., Erritzøe, J. & Rózsa, L. 2010a. Ectoparasites, uropygial glands and hatching success in birds. Oecologia 163: 303311.
  • Møller, A.P., Erritzoe, J. & Nielsen, J.T. 2010b. Predators and microorganisms of prey: goshawks prefer prey with small uropygial glands. Funct. Ecol. 24: 608613.
  • Møller, A.P., Garamszegi, L.Z., Peralta-Sánchez, J.M. & Soler, J.J. 2011. Migratory divides and their consequences for dispersal, population size and parasite-host interactions. J. Evol. Biol. 24: 17441755.
  • Møller, A.P., Peralta-Sánchez, J.M., Nielsen, J.T., López-Hernández, E. & Soler, J.J. 2012. Goshawk prey have more bacteria than non-prey. J. Anim. Ecol. 81: 403410.
  • Moore, J. 2002. Parasites and the Behavior of Animals. Oxford University Press, Oxford.
  • Moreno, J., Briones, V., Merino, S., Ballesteros, C., Sanz, J.J. & Tomás, G. 2003. Beneficial effects of cloacal bacteria on growth and fledging size in nestling pied flycatchers (Ficedula hypoleuca) in Spain. Auk 120: 784790.
  • Moreno-Rueda, G. 2011. House Sparrows Passer domesticus with larger uropygial glands show reduced feather wear. Ibis 153: 195198.
  • Narushin, V.G. 2005. Production, modeling, and education: egg geometry calculation using the measurements of length and breadth. Poultry Sci. 84: 482484.
  • Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zoolog. Scr. 26: 331348.
  • Pagel, M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877884.
  • Pap, P.L., Vágási, C.I., Osváth, G., Muresan, C. & Barta, Z. 2010. Seasonality in the uropygial gland size and feather mite abundance in house sparrows Passer domesticus: natural covariation and an experiment. J. Avian Biol. 41: 653661.
  • Peralta-Sánchez, J.M. 2011. Las bacterias como agentes modeladores de las estrategias vitales en aves. PhD thesis. University of Granada, Granada.
  • Peralta-Sánchez, J.M., Møller, A.P., Martín-Platero, A.M. & Soler, J.J. 2010. Number and colour composition of nest lining feathers predict eggshell bacterial community in barn swallow nests: an experimental study. Funct. Ecol. 24: 426433.
  • Piault, R., Gasparini, J., Bize, P., Paulet, M., McGraw, K.J. & Roulin, A. 2008. Experimental support for the makeup hypothesis in nestling tawny owls (Strix aluco). Behav. Ecol. 19: 703709.
  • Playfair, J. & Bancroft, G. 2004. Infection and Immunity, 2nd edn. Oxford University Press, Oxford.
  • Price, P.W. 1980. Evolutionary Biology of Parasites. Princeton University Press, Princeton, NJ.
  • Rajchard, J. 2010. Biologically active substances of bird skin: a review. Vet. Med-Czech. 55: 413421.
  • Reneerkens, J., Piersma, T. & Damste, J.S.S. 2002. Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proc. R. Soc. Lond. B 269: 21352139.
  • Reneerkens, J., Verstegenh, M.A., Schneider, A.M., Piersma, T. & Burtt, E.H.J. 2008. Seasonally changing preen wax composition: Red Knots’ flexible defense against feather-degrading bacteria? Auk 125: 286290.
  • Salyers, A.A. & Whitt, D.D. 2002. Bacterial Pathogenesis. A Molecular Approach, 2nd edn. ASM Press, Washington, DC.
  • Shawkey, M.D., Pillai, S.R. & Hill, G.E. 2003. Chemical warfare? Effects of uropygial oil on feather-degrading bacteria J. Avian Biol. 34: 345349.
  • Shawkey, M.D., Firestone, M.K., Brodie, E.L. & Beissinger, S.R. 2009. Avian incubation inhibits growth and diversification of bacterial assemblages on eggs. PLoS ONE 4: e4522.
  • Singleton, D.R. & Harper, R.G. 1998. Bacteria in old house wren nests. J. Field Ornithol. 69: 7174.
  • Soler, J.J. & Avilés, J.M. 2010. Sibling competition and conspicuousness of nestling gapes in altricial birds: a comparative study. PLoS ONE 5: e10509.
  • Soler, J.J., Martín-Vivaldi, M., Ruiz-Rodríguez, M., Valdivia, E., Martín-Platero, A.M., Martínez-Bueno, M. et al. 2008. Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct. Ecol. 22: 864871.
  • Soler, J.J., Martín-Vivaldi, M., Peralta-Sánchez, J.M. & Ruiz-Rodríguez, M. 2010. Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol. J. 3: 93100.
  • Soler, J.J., Peralta-Sanchez, J.M., Flensted-Jensen, E., Martin-Platero, A.M. & Møller, A.P. 2011a. Innate humoural immunity is related to eggshell bacterial load of European birds: a comparative analysis. Naturwissenschaften 98: 807813.
  • Soler, J.J., Peralta-Sánchez, J.M., Martínez Bueno, M., Martín-Vivaldi, M., Martín-Gálvez, D., Vela, A.I. et al. 2011b. Brood parasitism is associated with increased bacterial contamination of host eggs: bacterial loads of host and parasitic eggs. Biol. J. Linn. Soc. 103: 836848.
  • Spottiswoode, C. & Møller, A.P. 2004. Genetic similarity and hatching success in birds. Proc. R. Soc. Lond. B 271: 267272.
  • Sprent, P. 1993. Applied Nonparametric Statistical Methods, 2nd edn. Chapman & Hall, London.
  • Stolp, H. 1988. Microbial Ecology: Organisms, Habitats, Activities. Cambridge University Press, Cambridge.
  • Thuiller, W., Lavergne, S., Roquet, C., Boulangeat, I., Lafourcade, B. & Araujo, M. 2011. Consequences of climate change on the tree of life in Europe. Nature 470: 531534.
  • Versteegh, M., Reneerkens, J., Piersma, T. & Burtt, E. 2006. Seasonal shifts in uropygial gland secretions in Red Knots: a flexible defense against feather-degrading bacteria? J. Ornithol. 147: 36.
  • Wakelin, D. 1996. Immunity to Parasites: How Parasitic Infections Are Controlled, 2nd edn. Cambridge University Press, Cambridge.
  • Wang, J.M., Firestone, M.K. & Beissinger, S.R. 2011. Microbial and environmental effects on avian egg viability: do tropical mechanisms act in a temperate environment? Ecology 92: 11371145.