• Open Access

Performance evaluation of 70 hepatitis B virus (HBV) surface antigen (HBsAg) assays from around the world by a geographically diverse panel with an array of HBV genotypes and HBsAg subtypes



This article is corrected by:

  1. Errata: Erratum Volume 98, Issue 4, 581, Article first published online: 15 April 2010

  • Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

M. El-Nageh, International Consortium for Blood Safety (ICBS), New York, NY, USA
E-mail: elnagehmm@aol.com


Background and Objectives  This study was conducted by the International Consortium for Blood Safety (ICBS) to identify high-quality test kits for detection of hepatitis B virus (HBV) surface antigen (HBsAg) for the benefit of developing countries.

Materials and Methods  The 70 HBsAg test kits from around the world were evaluated comparatively for their clinical sensitivity, analytical sensitivity, sensitivity to HBV genotypes and HBsAg subtypes, and specificity using 394 (146 clinical, 48 analytical and 200 negative) ICBS Master Panel members of diverse geographical origin comprising the major HBV genotypes A-F and the HBsAg subtypes adw2,4, adr and ayw1-4.

Results  Seventeen HBsAg enzyme immunoassay (EIA) kits had high analytical sensitivity <0·13 IU/ml, showed 100% diagnostic sensitivity, and were even sensitive for the various HBV variants tested. An additional six test kits had high sensitivity (<0·13 IU/ml) but missed HBsAg mutants and/or showed reduced sensitivity to certain HBV genotypes. Twenty HBsAg EIA kits were in the sensitivity range of 0·13–1 IU/ml. The other eight EIAs and the 19 rapid assays had analytical sensitivities of 1 to >4 IU/ml. These assays were falsely negative for 1–4 clinical samples and 17 of these test kits showed genotype dependent sensitivity reduction. Analytical sensitivities for HBsAg of >1 IU/ml significantly reduce the length of the HBsAg positive period which renders them less reliable for detecting HBsAg in asymptomatic HBV infections. Reduced sensitivity for HBsAg with genetic diversity of HBV occurred with genotypes/subtypes D/ayw3, E/ayw4, F/adw4 and by S gene mutants. Specificity of the HBsAg assays was ≥99·5% in 57 test kits and 96·4–99·0% in the remaining test kits.

Conclusion  Diagnostic efficacy of the evaluated HBsAg test kits differed substantially. Laboratories should therefore be aware of the analytical sensitivity for HBsAg and check for the relevant HBV variants circulating in the relevant population.