Lipaemic plasma induces haemolysis in resuspended red cell concentrate

Authors


Saber Bashir, NHS Blood and Transplant, Crescent Drive, Brentwood, Essex CM15 8DP, UK
E-mail: saber.bashir@nhsbt.nhs.uk

Abstract

Introduction  We investigated whether haemolysis in red cells suspended in plasma was affected by the lipid content and/or methylene blue (MB) treatment of fresh-frozen plasma (FFP). We also investigated whether haemolysis was affected by the conditions under which lipaemic plasma was stored.

Methods  Study 1: Visibly lipaemic (n = 22) or nonlipaemic FFP (n = 24) units were thawed, pooled and split into identical pairs, one of which was MB treated. These units were used to resuspend red cell concentrates (RCC) and tested for haemolysis immediately and after 24 and 48 h of storage at 2–6°C. Study 2: Fresh plasma was aliquoted into 15-ml tubes and stored in one of four ways as follows: room temperature; 2–6°C; frozen and thawed; or twice frozen and thawed. A sample of RCC was resuspended in each of these plasmas and haemolysis measured after 2 h. Study 3: Plasma was divided into 15-ml tubes and stored as in study 2 followed by storage left standing upright in a refrigerator (2–6°C) for 24 h (with the exception of the room temperature sample). Plasma was separated into top, middle and bottom fractions and used to resuspend RCC that were assessed for haemolysis after 2 h.

Results  The levels of haemolysis in RCC were immediately greater when suspended in lipaemic plasma (0·70 ± 0·53% v 0·05 ± 0·06% for nonlipaemic plasma), which increased further on subsequent storage for 48 h (1·22 ± 0·40% v 0·15 ± 0·14% for nonlipaemic plasma). This was irrespective of whether plasma was MB treated. Lipaemic plasma stored frozen and then thawed resulted in the greatest haemolysis. In lipaemic plasma stored at 2–6°C, the chylomicron-rich top fraction caused the highest level of haemolysis.

Conclusion  Haemolysis in red cells is increased in those suspended in lipaemic plasma and is dependent upon the storage conditions of that plasma prior to suspension. These data are relevant to the choice of plasma used to suspend red cells for neonatal exchange transfusion.

Ancillary