In general terms embryonic induction involves the association of embryonic tissues and leads to tissue differentiation. It is one of the known essential processes leading to the normal development of embryos. However, despite its importance, very little is known about the mechanisms of inductive interactions. For example, what is the nature of communication between tissues, how does this communication effect the synthetic activity of the cells, and once a new pattern of synthesis has been established how is the sequence of events leading to tissue differentiation co-ordinated? The answers to these questions will come only from the intensive study of inductive interactions and tissue differentiation at all levels from the morphological to the molecular.

One of the best known examples of induction, at least superficially, is the differentiation of lens from head ectoderm after its interaction with optic vesicle. The popularity of this tissue with embryologists may be attributed to its accessibility of manipulation because of its position on the outside of the embryo. In addition, its distinct morphology and specific biochemical composition make it relatively easy to determine whether the lens differentiates after experimental treatment. About the turn of this century lens differentiation was thought to depend on the specific interaction of just two embryonic tissues, head ectoderm and neuro-ectoderm (optic vesicle). However, experimental analysis since then has revealed that this oversimplified view of lens induction is incorrect. In fact there is evidence that a large number of other tissues besides embryonic head ectoderm can differentiate into lens and that other conditions besides the presence of optic vesicle can induce lens differentiation. The purpose of this work is to review the evidence on lens induction and based on this, to determine what we know about the mechanism(s) controlling this process.