SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

With mitochondria from Saccharomyces carlsbergensis the functional relationship of the exogenous and endogenous NAD system has been investigated with respect to the membrane barrier, the localisation of NADH dehydrogenase and other NAD-and flavine-linked dehydrogenases.

  • 1
    Added NAD and NADH do not permeate through the inner membrane into the matrix space of mitochondria from S. carlsbergensis despite the high rate of oxidation. There is no exchange between exogenous and endogenous NADH and NAD.
  • 2
    A transhydrogenation between external and internal NADH and NAD across the inner membrane is not observed.
  • 3
    By applying the “ferricyanide method” two separate dehydrogenases can be identified: one for the oxidation of exogenous NADH, located towards the outer surface of the inner mitochondrial membrane; and a second for the oxidation of endogenous NADH directed towards the inner surface. Both dehydrogenases are connected to the cytochrome chain through the ubiquinone pool.
  • 4
    About 50% of the total NADH dehydrogenase activity of yeast mitochondria is solubilized by sonication. The solubilized NADH dehydrogenase is tentatively identified with the external enzyme. This agrees with the finding that on opening the membrane by sonication the total activity of NADH-ferricyanide reduction increases by 65%.
  • 5
    Applying both [4B-3H]NADH and [4A-3H]NADH the oxidation of both exogenous and endogenous NADH by ferricyanide and by oxygen are found to be B-specific.
  • 6
    By application of the “ferricyanide method” to other substrates it is concluded that the dehydrogenases for glycerolphosphate and possibly lactate are localized before the barrier for ferricyanide while the dehydrogenases for ethanol, isocitrate and succinate are localized behind it. This barrier is identical with the inner mitochondrial membrane.
  • 7
    The existence of a mitochondrial alcohol dehydrogenase, accounting for about 6% of the total cellular activity and located in the matrix space, is established. The dual localization of alcohol dehydrogenase is considered to facilitate the equilibration between the intra- and extra-mitochondrial NAD systems via an ethanol-acetaldehyde shuttle.
Unusual Abbreviation
EGTA

ethylene glycol bis(β-aminoethyl)-N, N′-tetraacetic acid

Enzymes
 

NADH dehydrogenase or reduced-NAD: (acceptor) oxidoreductase (EC 1.6.99.3)

 

succinate dehydrogenase or succinate: (acceptor) oxidoreductase (EC 1.3.99.1)

 

lipoamide dehydrogenase or reduced-NAD: lipoamide oxidoreductase (EC 1.6.4.3): malate dehydrogense or l-malate:NAD oxidoreductase (EC 1.1.1.37)

 

alcohol dehydrogenase or alcohol:NAD oxidoreductase (EC 1.1.1.1)

 

isocitrate dehydrogenase or threo-ds-isocitrate:NAD oxidoreductase (EC 1.1.1.41)

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • 1
    Ohnishi, T., Kawaguchi, L., and Hagihara, B., J. Biol. Chem. 241 (1966) 1797.
  • 2
    Lehninger, A. L., in The Harvey Lectures 1953–54, Academic Press Inc. Publishers, New York 1955, p. 176.
  • 3
    Schatz, G., and Racker, E., Biochem. Biophys. Res. Commun. 22 (1966) 579.
  • 4
    Ohnishi, T., Kröger, A., Heldt, H. W., Pfaff, E., and Klingenberg, M., Eur. J. Biochem. 1 (1967) 301.
  • 5
    Klingenberg, M., and Schollmeyer, P., Biochem. Z. 333 (1960) 335.
  • 6
    Lee, C. P., Simard-Duquesne, N., Ernster, L., and Hobermann, H. D., Biochim. Biophys. Acta, 105 (1965) 397.
  • 7
    Klingenberg, M., in Methoden der enzymatischen Analyse (herausgegeben vonH. U.Bergmeyer), Verlag Chemie GmbH, Weinheim 1962, p. 528 and 531.
  • 8
    Pfaff, E., Doctoral Thesis, University of Marburg, 1965.
  • 9
    Klingenberg, M., and Pfaff, E., in Methods in Enzymology (edited by S. P.Colowick and N. O.Kaplan), Academic Press, New York 1967, Vol. X, p. 682.
  • 10
    Klingenberg, M., and Pfaff, E., in Regulation of Metabolic Processes in Mitochondria (edited by J. M.Tagar, S.Papa, E.Quagliariello, and E. C.Slater), Elsevier Publishing Company, Amsterdam-London-New York 1966, p. 180.
  • 11
    Klingenberg, M., in Proc. Symp. Energy-Linked Functions of Mitochondria, Academic Press, New York 1963, p. 121.
  • 12
    Copenhaver, J. H., and Lardy, H. H., J. Biol. Chem. 195 (1952) 225.
  • 13
    Pressmann, B. C., Biochim. Biophys. Acta, 17 (1955) 273.
  • 14
    Lee, C. P., Sottocasa, G., and Ernster, L., in Methods in Enzymology (edited by S. P.Colowick and N. O.Kaplan), Academic Press, New York and London 1967, Vol. X, p. 33.
  • 15
    Klingenberg, M., and Jagow, G., in Electron Transport and Energy conservation (edited by J. M.Tager, S.Papa, E.Quagliariello, and E. C.Slater), Adriatica Editrice, Bari , in press.
  • 16
    Urban, P., and Klingenberg, M., unpublished results.
  • 17
    Klingenberg, M., unpublished results.
  • 18
    Estabrook, R. W., J. Biol. Chem. 236 (1961) 3051.
  • 19
    Walter, P., and Lardy, H. A., Biochemistry, 3 (1964) 812.
  • 19a.
    Singer, T. P., Kearney, E. B., Gregolin, C., Boeri, E., and Rippa, M., Biochem. Biophys. Res. Commun. 3 (1960) 428.
  • 20
    Bücher, Th., and Klingenberg, M., Angew. Chem. 70 (1958) 552.
  • 21
    Ohnishi, T., Sottocasa, G., and Ernster, L., Bull. Soc. Chim. Biol. 11 (1966) 1189.
  • 21a.
    Purvis, J. L., and Lowenstein, J. M., J. Biol. Chem. 236 (1961) 2794.
  • 22
    Hall, D. O., and Greenawalt, J. W., J. Gen. Microbiol. 48 (1967) 419.
  • 23
    Weiss, H., von Jagow, G., Klingenberg, M., and Bücher, T., Eur. J. Biochem. in press.
  • 24
    Watson, K., and Smith, J. E., J. Biochem. (Tokyo), 61 (1967) 527.
  • 25
    Light, A., Ragan, C., and Garland, P., FEBS Letters, 1 (1968) 4.
  • 26
    Chance, B., in The Harvey Lectures 1953–54, Academic Press Inc., New York 1955, p. 145.
  • 27
    Chance, B., and Thorell, B., J. Biol. Chem. 234 (1959) 3044.
  • 28
    Maitra, P., and Estabrook, R., Arch. Biochem. Biophys. 121 (1967) 140.
  • 29
    Klingenberg, M., in 11. Mosbacher Kolloquium „Zur Bedeutung der freien Nucleotide”, Springer Verlag, Heidelberg 1961, p. 82.
  • 30
    Klingenberg, M., Fed. Proc. 22 (1963) 527.
  • 31
    Klingenberg, M., in Control of Energy Metabolism, Academic Press Inc., New York 1965, p. 149.
  • 32
    Krebs, H. A., and Veech, R. L., in The Energy Level and Metabolic Control in Mitochondria (edited by S.Papa, J.Tager, E.Quagliariello, and E.Slater), Adriatica Editrice, Bari 1969, p. 329.
  • 33
    Klingenberg, M., Angew. Chem. 75 (1963) 900.
  • 34
    Klingenberg, M., Heldt, H. W., and Pfaff, E., in The Energy Level and Metabolic Control in Mitochondria (edited by S.Papa, J.Tager, E.Quagliariello, and E.Slater), Adriatica Editrice, Bari 1969, p. 237.