SEARCH

SEARCH BY CITATION

Abstract

  1. Top of page
  2. Abstract
  3. REFERENCES

The autoxidation of pyrogallol was investigated in the presence of EDTA in the pH range 7.9–10.6.

The rate of autoxidation increases with increasing pH. At pH 7.9 the reaction is inhibited to 99% by superoxide dismutase, indicating an almost total dependence on the participation of the superoxide anion radical, O2·, in the reaction. Up to pH 9.1 the reaction is still inhibited to over 90% by superoxide dismutase, but at higher alkalinity, O2· -independent mechanisms rapidly become dominant.

Catalase has no effect on the autoxidation but decreases the oxygen consumption by half, showing that H2O2 is the stable product of oxygen and that H2O2 is not involved in the autoxidation mechanism.

A simple and rapid method for the assay of superoxide dismutase is described, based on the ability of the enzyme to inhibit the autoxidation of pyrogallol.

A plausible explanation is given for the non-competitive part of the inhibition of catechol O-methyltransferase brought about by pyrogallol.

Enzymes
 

Superoxide dismutase (EC 1.15.1.1)

 

catalase (EC 1.11.1.6)

 

catechol O-methyltransferase (EC 2.1.1.6)

REFERENCES

  1. Top of page
  2. Abstract
  3. REFERENCES
  • 1
    Taube, H. (1965) in Oxygen, Proc. Symp. Spons. New York Heart Association, pp. 2952, Little Brown and Co.
  • 2
    Mc Cord, J. M. & Fridovich, I. (1969) J. Biol. Chem. 244, 60496055.
  • 3
    Mc Cord, J. M. & Fridovich, I. (1969) J. Biol. Chem. 244, 60566063.
  • 4
    Misra, H. P. & Fridovich, I. (1972) J. Biol. Chem. 247, 31703175.
  • 5
    Heikkila, R. E. & Cohen, G. (1973) Science (Wash. D. C.) 181, 456457.
  • 6
    Klug, D., Rabani, J. & Fridovich, I. (1972) J. Biol. Chem. 247, 48394842.
  • 7
    Rotilio, G., Bray, R. C. & Fielden, E. M. (1972) Biochim. Biophys. Acta, 268, 605609.
  • 8
    Weser, U., Bunnenberg, E., Cammack, R., Djerassi, C., Flohé, L., Thomas, G. & Volter, W. (1971) Biochim. Biophys. Acta, 243, 203213.
  • 9
    Samejima, T. & Tsi Yang, J. (1963) J. Biol. Chem. 238, 32563261.
  • 10
    Kortüm, G., Vogel, W. & Andrussow, K. (1961) Dissociation Constants of Organic Acids in Aqueous Solution, p. 443, Butterworths, London .
  • 11
    Nierenstein, M. & Spiers, C. W. (1913) Ber. Dtsch. Chem. Ges. 46, 31513157.
  • 12
    Barltrop, J. A. & Nicholson, J. S. (1948) J. Chem. Soc. 116120.
  • 13
    Miyahara, S. & Takahashi, H. (1971) J. Biochem. (Tokyo) 69, 231233.
  • 14
    Siegel, S. M. & Siegel, B. Z. (1958) Nature (Lond.) 181, 11531154.
  • 15
    Halliwell, B. (1973) Biochem. J. 135, 379381.
  • 16
    Weisiger, R. A. & Fridovich, I. (1973) J. Biol. Chem. 248, 35823592.
  • 17
    Yost, F. J. & Fridovich, I. (1974) Arch. Biochem. Biophys. 161, 395401.
  • 18
    Marklund, S. (1973) Acta Chem. Scand. 27, 14581460.
  • 19
    Ghosh, J. C. & Rakshit, P. C. (1937) Biochem. Z. 294, 330335.
  • 20
    Finazzi Agró, A., Giovagnoli, C., De Sole, P., Calabrese, L., Rotilio, G. & Mondovi, B. (1972) FEBS Lett. 21, 183185.
  • 21
    Weser, U. & Paschen, W. (1972) FEBS Lett. 27, 248250.
  • 22
    Paschen, W. & Weser, U. (1973) Biochim. Biophys. Acta, 327, 211222.
  • 23
    Khan, A. U. (1970) Science (Wash. D. C.) 168, 476477.
  • 24
    Lee, K. D. & Seliger, H. H. (1972) Photochem. Photobiol. 15, 227237.
  • 25
    Hodgson, E. K. & Fridovich, I. (1973) Photochem. Photobiol. 18, 451455.
  • 26
    Merkel, P. B. & Kearns, D. R. (1972) J. Am. Chem. Soc. 94, 72447253.
  • 27
    Crout, J. R. (1961) Biochem. Pharmacol. 6, 4750.
  • 28
    Baldessarini, R. J. & Greiner, E. (1973) Biochem. Pharmacol. 22, 247256.
  • 29
    Haber, F. & Weiss, J. (1934) Proc. Soc. Lond. A Math. Phys. Sci. 147, 332351.
  • 30
    Axelrod, J. & Tomchick, R. (1958) J. Biol. Chem. 233, 702705.