Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis

Authors


Abstract

This study deals with the effect of fibrin on the transformation of Glu-plasminogen to Glu-plasmin during fibrinolysis. It focuses particularly on changes in fibrin effector function caused by plasmin-catalysed fibrin degradation. Conversion of 125I-labelled Glu-plasminogen to Glu-plasmin was catalysed by urokinase or tissue plasminogen activator, in the presence of different preparations of progressively degraded fibrin. Plasmin catalysis of Glu-plasminogen and the fibrin (derivative) effector was inhibited by aprotinin.

The presence of intact fibrin enhanced the rate of Glu-plasmin formation catalysed by tissue plasminogen activator, but not by urokinase. The presence of initially plasmin-cleaved fibrin, however, increased the rates of Glu-plasmin formation with both activators, as compared to those found with intact fibrin. The rate enhancements induced by initial plasmin degradation of the fibrin effector were associated with an increase in its affinity to both Glu-plasminogen and tissue plasminogen activator, suggesting causal relationships. The weak binding of urokinase was unaffected by fibrin degradation, indicating that effector function was solely exerted on the Glu-plasminogen moiety of urokinase-activated systems. Further degradation of fibrin decreased the stimulating effect on Glu-plasmin formation. This decrease occurred at an earlier stage of degradation with tissue plasminogen activator than with urokinase, indicating that greater integrity of the fibrin effector is neccessary for its optimal interaction with the tissue plasminogen activator than with Glu-plasminogen.

Concentrations of tranexamic acid that saturate low-affinity lysine-binding sites nearly completely dissociated the binding of Glu-plasminogen to degraded fibrin, but not to intact fibrin. In analogy with the binding of lysine analogues to these sites, the conformation of Glu-plasminogen may be altered by binding to degraded fibrin, thus giving rise to the increased activation rate.

Ancillary